




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年九上数学期末模拟试卷注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(每小题3分,共30分)1.如图,点A,B,C,D在⊙O上,AB=AC,∠A=40°,CD∥AB,若⊙O的半径为2,则图中阴影部分的面积是()A. B. C. D.2.已知点都在反比例函数为常数,且)的图象上,则与的大小关系是()A. B.C. D.3.如图,已知a∥b∥c,直线AC,DF与a、b、c相交,且AB=6,BC=4,DF=8,则DE=(
)A.12 B. C. D.34.如图,菱形在第一象限内,,反比例函数的图象经过点,交边于点,若的面积为,则的值为()A. B. C. D.45.下列四幅图的质地大小、背面图案都一样,把它们充分洗匀后翻放在桌面上,则从中任意抽取一张,抽到的图案是中心对称图形的概率是()A. B. C. D.16.如图,△ABC与△A′B′C′是位似图形,PB′=BB′,A′B′=2,则AB的长为()A.1 B.2 C.4 D.87.如图,中,将绕点逆时针旋转后得到,点经过的路径为则图中涂色部分的面积为()A. B. C. D.8.关于反比例函数y=﹣,下列说法错误的是()A.图象经过点(1,﹣3)B.图象分布在第一、三象限C.图象关于原点对称D.图象与坐标轴没有交点9.如图,在某监测点B处望见一艘正在作业的渔船在南偏西15°方向的A处,若渔船沿北偏西75°方向以40海里/小时的速度航行,航行半小时后到达C处,在C处观测到B在C的北偏东60°方向上,则B、C之间的距离为().A.20海里 B.10海里 C.20海里 D.30海里10.已知反比例函数y=2x﹣1,下列结论中,不正确的是()A.点(﹣2,﹣1)在它的图象上B.y随x的增大而减小C.图象在第一、三象限D.若x<0时,y随x的增大而减小二、填空题(每小题3分,共24分)11.在一个不透(明的袋子中装有除了颜色外其余均相同的个小球,其中红球个,黑球个,若再放入个一样的黑球并摇匀,此时,随机摸出一个球是黑球的概率等于,则的值为__________.12.如图,河堤横断面迎水坡的坡比是,堤高,则坡面的长度是__________.13.计算的结果是_____.14.若用αn表示正n边形的中心角,则边长为4的正十二边形的中心角是____.15.在平面直角坐标系中,将点A(﹣3,2)向右平移3个单位长度,再向下平移2个单位长度,那么平移后对应的点A′的坐标是_____.16.如图,点C是以AB为直径的半圆上一个动点(不与点A、B重合),且AC+BC=8,若AB=m(m为整数),则整数m的值为______.17.若如果x:y=3:1,那么x:(x-y)的值为_______.18.Q是半径为3的⊙O上一点,点P与圆心O的距离OP=5,则PQ长的最小值是_____.三、解答题(共66分)19.(10分)如图,是⊙的直径,是的中点,弦于点,过点作交的延长线于点.(1)连接,求;(2)点在上,,DF交于点.若,求的长.20.(6分)如图,已知的三个顶点的坐标分别为、、,P(a,b)是△ABC的边AC上一点:(1)将绕原点逆时针旋转90°得到,请在网格中画出,旋转过程中点A所走的路径长为.(2)将△ABC沿一定的方向平移后,点P的对应点为P2(a+6,b+2),请在网格画出上述平移后的△A2B2C2,并写出点A2、的坐标:A2().(3)若以点O为位似中心,作△A3B3C3与△ABC成2:1的位似,则与点P对应的点P3位似坐标为(直接写出结果).21.(6分)如图,抛物线y=a(x+2)(x﹣4)与x轴交于A,B两点,与y轴交于点C,且∠ACO=∠CBO.(1)求线段OC的长度;(2)若点D在第四象限的抛物线上,连接BD、CD,求△BCD的面积的最大值;(3)若点P在平面内,当以点A、C、B、P为顶点的四边形是平行四边形时,直接写出点P的坐标.22.(8分)一不透明的布袋里,装有红、黄、蓝三种颜色的小球(除颜色外其余都相同),其中有红球2个,蓝球1个,黄球若干个,现从中任意摸出一个球是红球的概率为.(1)求口袋中黄球的个数;(2)甲同学先随机摸出一个小球(不放回),再随机摸出一个小球,请用“树状图法”或“列表法”,求两次摸出都是红球的概率;23.(8分)如图正方形ABCD中,E是BC边的中点,AE与BD相交于F点,△DEF的面积是1,求正方形ABCD的面积.24.(8分)如图,一条公路的转弯处是一段圆弧.用直尺和圆规作出所在圆的圆心O(要求保留作图痕迹,不写作法);25.(10分)已知:如图,在平行四边形ABCD中,O为对角线BD的中点,过点O的直线EF分别交AD,BC于E,F两点,连结BE,DF.(1)求证:△DOE≌△BOF.(2)当∠DOE等于多少度时,四边形BFDE为菱形?请说明理由.26.(10分)中国古贤常说万物皆自然,而古希腊学者说万物皆数.同学们还记得我们最初接触的数就是“自然数”吧!在数的学习过程中,我们会对其中一些具有某种特性的自然数进行研究,我们研究了奇数、偶数、质数、合数等.现在我们来研究另一种特珠的自然数—“喜数”.定义:对于一个两位自然数,如果它的个位和十位上的数字均不为零,且它正好等于其个位和十位上的数字的和的倍(为正整数),我们就说这个自然数是一个“喜数”.例如:24就是一个“4喜数”,因为25就不是一个“喜数”因为(1)判断44和72是否是“喜数”?请说明理由;(2)试讨论是否存在“7喜数”若存在请写出来,若不存在请说明理由.
参考答案一、选择题(每小题3分,共30分)1、B【分析】连接BC、OD、OC、BD,过O点作OE⊥CD于E点,先证△COD是等边三角形,再根据阴影部分的面积是S扇形COD-S△COD计算可得.【详解】如图所示,连接BC、OD、OC、BD,过O点作OE⊥CD于E点,
∵∠A=40°,AB=AC,
∴∠ABC=70°,
∵CD∥AB,
∴∠ACD=∠A=40°,
∴∠ABD=∠ACD=40°,
∴∠DBC=30°,
则∠COD=2∠DBC=60°,
又OD=OC,
∴△COD是等边三角形,∴OD=CD=2,DE=∴
则图中阴影部分的面积是S扇形COD-S△COD
故选:B.【点睛】本题主要考查扇形面积的计算,解题的关键是掌握等腰三角形和等边三角形的判定与性质、圆周角定理、扇形的面积公式等知识点.2、B【分析】由m2>0可得-m2<0,根据反比例函数的性质可得的图象在二、四象限,在各象限内,y随x的增大而增大,根据各点所在象限及反比例函数的增减性即可得答案.【详解】∵m为常数,,∴m2>0,∴-m2<0,∴反比例函数的图象在二、四象限,在各象限内,y随x的增大而增大,∵-2<-1<0,1>0,∴0<y1<y2,y3<0,∴y3<y1<y2,故选:B.【点睛】本题考查反比例函数的性质,对于反比例函数y=(k≠0),当k>0时,函数图象在一、三象限,在各象限,y随x的增大而减小;当k<0时,函数图象在二、四象限,在各象限,y随x的增大而增大;熟练掌握反比例函数的性质是解题关键.3、C【解析】解:∵a∥b∥c,∴,∵AB=6,BC=4,DF=8,∴,∴DE=.故选C.【点睛】本题考查了平行线分线段成比例定理,熟练掌握定理内容是关键:三条平行线截两条直线,所得的对应线段成比例.4、C【分析】过A作AE⊥x轴于E,设OE=,则AE=,OA=,即菱形边长为,再根据△AOD的面积等于菱形面积的一半建立方程可求出,利用点A的横纵坐标之积等于k即可求解.【详解】如图,过A作AE⊥x轴于E,设OE=,在Rt△AOE中,∠AOE=60°∴AE=,OA=∴A,菱形边长为由图可知S菱形AOCB=2S△AOD∴,即∴∴故选C.【点睛】本题考查了反比例函数与几何综合问题,利用特殊角度的三角函数值表示出菱形边长及A点坐标是解决本题的关键.5、C【分析】先判断出几个图形中的中心对称图形,再根据概率公式解答即可.【详解】解:由图形可得出:第1,2,3个图形都是中心对称图形,∴从中任意抽取一张,抽到的图案是中心对称图形的概率是:.故选:C.【点睛】此题主要考查了概率计算公式,熟练掌握中心对称图形的定义和概率的计算公式是解题的关键.6、C【分析】根据位似图形的对应边互相平行列式计算,得到答案.【详解】∵△ABC与△A′B′C′是位似图形,∴A′B′∥AB,∴△PA′B′∽△PAB,∴==,∴AB=4,故选:C.【点睛】本题考查的是位似变换的概念、相似三角形的性质,掌握如果两个图形不仅是相似图形,而且对应顶点的连线相交于一点,对应边互相平行,那么这样的两个图形叫做位似图形是解题的关键.7、A【分析】先根据勾股定理得到AB,再根据扇形的面积公式计算出,由旋转的性质得到Rt△ADE≌Rt△ACB,于是.【详解】∵∠ACB=90°,AC=BC=1,
∴,
∴,又∵Rt△ABC绕A点逆时针旋转30°后得到Rt△ADE,
∴Rt△ADE≌Rt△ACB,∴.
故选:A【点睛】本题主要考查的是旋转的性质、扇形的面积公式,勾股定理的应用,将阴影部分的面积转化为扇形ABD的面积是解题的关键.8、B【解析】反比例函数y=(k≠0)的图象k>0时位于第一、三象限,在每个象限内,y随x的增大而减小;k<0时位于第二、四象限,在每个象限内,y随x的增大而增大.根据反比例函数的性质并结合其对称性对各选项进行判断.【详解】A、把点(1,﹣3)代入函数解析式,﹣3=﹣3,故本选项正确,不符合题意,B、∵k=﹣2<0,∴图象位于二、四象限,且在每个象限内,y随x的增大而增大,故本选项错误,符合题意,C、反比例函数的图象可知,图象关于原点对称,故本选项正确,不符合题意D、∵x、y均不能为0,故图象与坐标轴没有交点,故本选项正确,不符合题意.故选:B.【点睛】本题主要考查的是反比例函数的性质,是中考中比较常见的知识点,一般难度不大,需熟练掌握.9、C【分析】如图,根据题意易求△ABC是等腰直角三角形,通过解该直角三角形来求BC的长度.【详解】如图,∵∠ABE=15°,∠DAB=∠ABE,∴∠DAB=15°,∴∠CAB=∠CAD+∠DAB=90°.又∵∠FCB=60°,∠CBE=∠FCB=60°,∠CBA+∠ABE=∠CBE,∴∠CBA=45°.∴在直角△ABC中,sin∠ABC==,∴BC=20海里.故选C.考点:解直角三角形的应用-方向角问题.10、B【分析】由反比例函数的关系式,可以判断出(-2,-1)在函数的图象上,图象位于一、三象限,在每个象限内y随x的增大而减小,进而作出判断,得到答案.【详解】A、把(﹣2,﹣1)代入y=2x﹣1得:左边=右边,故本选项正确,不符合题意;B、k=2>0,在每个象限内,y随x的增大而减小,故本选项错误,符合题意;C、k=2>0,图象在第一、三象限,故本选项正确,不符合题意;D、若x<0时,图象在第三象限内,y随x的增大而减小,故本选项正确,不符合题意;不正确的只有选项B,故选:B.【点睛】考查反比例函数的图象和性质,特别注意反比例函数的增减性,当k>0,在每个象限内,y随x的增大而减小;当k<0,在每个象限内,y随x的增大而增大.二、填空题(每小题3分,共24分)11、1【分析】由概率=所求情况数与总情况数之比,根据随机摸出一个球是黑球的概率等于可得方程,继而求得答案.【详解】根据题意得:,
解得:.
故答案为:1.【点睛】本题考查了概率公式的应用.用到的知识点为:概率=所求情况数与总情况数之比.12、【分析】先根据坡比求出AB的长度,再利用勾股定理即可求出BC的长度.【详解】故答案为:.【点睛】本题主要考查坡比及勾股定理,掌握坡比的定义及勾股定理是解题的关键.13、4【分析】直接利用二次根式的性质化简得出答案.【详解】解:原式.故答案为【点睛】此题主要考查了二次根式的性质与化简,正确掌握二次根式的性质是解题关键.14、30º【分析】根据正多边形的中心角的定义,可得正十二边形的中心角是:360°÷12=30°.【详解】正十二边形的中心角是:360°÷12=30°.故答案为:30º.【点睛】此题考查了正多边形的中心角.此题比较简单,注意准确掌握定义是关键.15、(0,0)【解析】根据坐标的平移规律解答即可.【详解】将点A(-3,2)向右平移3个单位长度,再向下平移2个单位长度,那么平移后对应的点A′的坐标是(-3+3,2-2),即(0,0),故答案为(0,0).【点睛】此题主要考查坐标与图形变化-平移.平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减.16、6或1【分析】因为直径所对圆周角为直角,所以ABC的边长可应用勾股定理求解,其中,且AC+BC=8,即可求得,列出关于BC的函数关系式,再根据二次函数的性质和三角形的三边关系得出的范围,再根据题意要求AB为整数,即可得出AB可能的长度.【详解】解:∵直径所对圆周角为直角,故ABC为直角三角形,∴根据勾股定理可得,,即,又∵AC+BC=8,∴AC=8-BC∴∵∴当BC=4时,的最小值=32,∴AB的最小值为∵∴∵AB=m∴∵m为整数∴m=6或1,故答案为:6或1.【点睛】本题主要考察了直径所对圆周角为直角、勾股定理、三角形三边关系、二次函数的性质,解题的关键在于找出AB长度的范围.17、【分析】根据x:y=3:1,则可设x=3a,y=a,即可计算x:(x-y)的值.【详解】解:设x=3a,y=a,则x:(x-y)=3a:(3a-a)=,故答案为:.【点睛】本题考查了比的性质,解题的关键是根据已有比例关系,设出x、y的值.18、1【分析】根据点与圆的位置关系即可得到结论.【详解】解:∵Q是半径为3的⊙O上一点,点P与圆心O的距离OP=5,根据三角形的三边关系,PQ≥OP-OQ(注:当O、P、Q共线时,取等号)∴PQ长的最小值=5-3=1,故答案为:1.【点睛】此题考查的是点与圆的位置关系,掌握三角形的三边关系求最值是解决此题的关键.三、解答题(共66分)19、(1);(2).【解析】(1)根据垂径定理可得AB垂直平分CD,再根据M是OA的中点及圆的性质,得出△OAD是等边三角形即可;(2)根据题意得出∠CNF=90°,再由Rt△CDE计算出CD,CN的长度,根据圆的内接四边形对角互补得出∠F=60°,从而根据三角函数关系计算出FN的值即可.【详解】解:(1)如图,连接OD,∵是⊙的直径,于点∴AB垂直平分CD,∵M是OA的中点,∴∴∴∠DOM=60°,又∵OA=OD∴△OAD是等边三角形∴∠OAD=60°.(2)如图,连接CF,CN,∵OA⊥CD于点M,∴点M是CD的中点,∴AB垂直平分CD∴NC=ND∵∠CDF=45°,∴∠NCD=∠NDC=45°,∴∠CND=90°,∴∠CNF=90°,由(1)可知,∠AOD=60°,∴∠ACD=30°,又∵交的延长线于点,∴∠E=90°,在Rt△CDE中,∠ACD=30°,,∴在Rt△CND中,∠CND=90°,∠NCD=∠NDC=45°,,∴由(1)可知,∠CAD=2∠OAD=120°,∴∠F=180°-120°=60°,∴在Rt△CFN中,∠CNF=90°,∠F=60°,,∴【点睛】本题考查了圆的性质、垂径定理、圆的内接四边形对角互补的性质、直角三角形的性质、锐角三角函数的应用,综合性较大,解题时需要灵活运用边与角的换算.20、(1)画图见解析,π;(2)画图见解析,(4,4);(3)P3(2a,2b)或P3(-2a,-2b)【解析】(1)分别得出△ABC绕点O逆时针旋转90º后的对应点得到的位置,进而得到旋转后的得到,而点A所走的路径长为以O为圆心,以OA长为半径且圆心角为90°的扇形弧长;(2)由点P的对应点为P2(a+6,b+2)可知△ABC向右平移6个单位长度,再向上平移2个单位长度,即可得到的△A2B2C2;(3)以位似比2:1作图即可,注意有两个图形,与点P对应的点P3的坐标是由P的横、纵坐标都乘以2或-2得到的.【详解】解:(1)如图所示,∵∴点A所走的路径长为:故答案为π(2)∵由点P的对应点为P2(a+6,b+2)∴△A2B2C2是△ABC向右平移6个单位长度,再向上平移2个单位长度可得到的,∴点A对应点A2坐标为(4,4)△A2B2C2如图所示,(3)∵P(a,b)且以点O为位似中心,△A3B3C3与△ABC的位似比为2:1∴P3(2a,2b)或P3(-2a,-2b)△A3B3C3如图所示,21、(1)2;(2)2;(3)(2,2),(6,﹣2)或(﹣6,﹣2)【分析】(1)由抛物线的解析式先求出点A,B的坐标,再证△AOC∽△COB,利用相似三角形的性质可求出CO的长;(2)先求出抛物线的解析式,再设出点D的坐标(m,m2﹣m﹣2),用含m的代数式表示出△BCD的面积,利用函数的性质求出其最大值;(3)分类讨论,分三种情况由平移规律可轻松求出点P的三个坐标.【详解】(1)在抛物线y=a(x+2)(x﹣4)中,当y=0时,x1=﹣2,x2=4,∴A(﹣2,0),B(4,0),∴AO=2,BO=4,∵∠ACO=∠CBO,∠AOC=∠COB=90°,∴△AOC∽△COB,∴,即,∴CO=2;(2)由(1)知,CO=2,∴C(0,﹣2)将C(0,﹣2)代入y=a(x+2)(x﹣4),得,a=,∴抛物线解析式为:y=x2﹣x﹣2,如图1,连接OD,设D(m,m2﹣m﹣2),则S△BCD=S△OCD+S△OBD﹣S△BOC=×2m+×4(﹣m2+m+2)﹣×4×2=﹣m2+2m=﹣(m﹣2)2+2,根据二次函数的图象及性质可知,当m=2时,△BCD的面积有最大值2;(3)如图2﹣1,当四边形ACBP为平行四边形时,由平移规律可知,点C向右平移4个单位长度,再向上平移2个单位长度得到点B,所以点A向右平移4个单位长度,再向上平移2个单位长度得到点P,因为A(﹣2,0),所以P1(2,2);同理,在图2﹣2,图2﹣3中,可由平移规律可得P2(6,﹣2),P3(﹣6,﹣2);综上所述,当以点A、C、B、P为顶点的四边形是平行四边形时,点P的坐标为(2,2),(6,﹣2),P3(﹣6,﹣2).【点睛】本题考查了相似三角形的判定与性质,待定系数法求二次函数的解析式,三角形的面积及平移规律等,解题关键是熟知平行四边形的性质及熟练运用平移规律.22、(1)1;(2)【分析】(1)设口袋中黄球的个数为x个,根据从中任意摸出一个球是红球的概率为和概率公式列出方程,解方程即可求得答案;(2)根据题意画出树状图,然后由树状图求得所有等可能的结果与两次摸出都是红球的情况,再利用概率公式即可求得答案;【详解】解:(1)设口袋中黄球的个数为个,根据题意得:解得:=1经检验:=1是原分式方程的解∴口袋中黄球的个数为1个(2)画树状图得:∵共有12种等可能的结果,两次摸出都是红球的有2种情况∴两次摸出都是红球的概率为:.【点睛】本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.23、1【分析】根据正方形的性质得到AD=BC,AD∥BC,根据相似三角形的性质得到=2,于是得到答案.【详解】解:∵四边形ABCD是正方形,∴AD=BC,AD∥BC,∴△ADE∽△EBF,∴=,∵E是BC边的中点,∴BC=AD=2BE,∴=2,∵△DEF的面积是1,∴△DBE的面积为,∵E是BC边的中点,∴S△BCD
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 医护工作服采购合同
- 维修保养合同范本:机械设施
- 高级顾问聘用合同
- 合伙协议合同简化版范本
- 酒店投资合作合同范本
- 化学品运输服务承包合同
- 私人装修合同协议书范本
- 企业设备抵押融资合同样本
- 宠物临时寄养服务合同范本
- 合同签约盛宴:五十二条经典致辞美句鉴赏
- 05PowerPoint 2016演示文稿软件电子课件 计算机基础知识(Windows 7+Office 2016)
- 妊娠期高血压剖宫产术后护理教学查房
- 教科版三年级科学下册分组实验与演示实验目录
- 暂予监外执行
- 急性肾小球肾炎讲稿
- 义务教育语文课程标准(2022)测试题带答案(20套)
- 公共厕所工程报价明细表
- 股骨颈骨折ppt精品
- 2023年江苏农牧科技职业学院单招职业适应性测试题库及答案解析
- 毛泽东诗词鉴赏分析
- 小学数学-纳税教学设计学情分析教材分析课后反思
评论
0/150
提交评论