




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年九上数学期末模拟试卷注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题(每小题3分,共30分)1.下列事件中,必然事件是()A.打开电视,正在播放宜春二套 B.抛一枚硬币,正面朝上C.明天会下雨 D.地球绕着太阳转2.如图是抛物线y1=ax2+bx+c(a≠0)图象的一部分,抛物线的顶点坐标A(1,3),与x轴的一个交点B(4,0),直线y2=mx+n(m≠0)与抛物线交于A,B两点,下列结论:①2a+b=0;②abc>0;③方程ax2+bx+c=3有两个相等的实数根;④抛物线与x轴的另一个交点是(﹣1,0);⑤当1<x<4时,有y2<y1,其中正确的是()A.①②③ B.①③④ C.①③⑤ D.②④⑤3.丽华根据演讲比赛中九位评委所给的分数作了如下表格:平均数中位数众数方差8.58.38.10.15如果去掉一个最高分和一个最低分,则表中数据一定不发生变化的是()A.平均数 B.众数 C.方差 D.中位数4.将抛物线向上平移3个单位长度,再向右平移2个单位长度,所得到的抛物线为().A.; B.;C.; D..5.全等图形是相似比为1的相似图形,因此全等是特殊的相似,我们可以由研究全等三角形的思路,提出相似三角形的问题和研究方法.这种其中主要利用的数学方法是()A.代入法 B.列举法 C.从特殊到一般 D.反证法6.若是方程的一个根.则代数式的值是()A. B. C. D.7.用配方法解一元二次方程x2﹣2x=5的过程中,配方正确的是()A.(x+1)2=6 B.(x﹣1)2=6 C.(x+2)2=9 D.(x﹣2)2=98.一次函数与二次函数在同一平面直角坐标系中的图象可能是().A. B. C. D.9.如图,四边形ABCD为⊙O的内接四边形,已知∠BOD=110°,则∠BCD的度数为()A.55° B.70° C.110° D.125°10.下列命题正确的是()A.有意义的取值范围是.B.一组数据的方差越大,这组数据波动性越大.C.若,则的补角为.D.布袋中有除颜色以外完全相同的个黄球和个白球,从布袋中随机摸出一个球是白球的概率为二、填空题(每小题3分,共24分)11.若=,则=__________.12.如图示一些小正方体木块所搭的几何体,从正面和从左面看到的图形,则搭建该几何体最多需要块正方体木块.13.高为7米的旗杆在水平地面上的影子长为5米,同一时刻测得附近一个建筑物的影子长30米,则此建筑物的高度为_____米.14.在直径为4cm的⊙O中,长度为的弦BC所对的圆周角的度数为____________.15.关于x的一元二次方程x2+4x﹣2k=0有实数根,则k的取值范围是_____.16.在△ABC中,AB=10,AC=8,B为锐角且,则BC=_____.17.在1:5000的地图上,某两地间的距离是,那么这两地的实际距离为______________千米.18.已知一块圆心角为300°的扇形铁皮,用它做一个圆锥形的烟囱帽(接缝忽略不计),若圆锥的底面圆的直径是80cm,则这块扇形铁皮的半径是_____cm.三、解答题(共66分)19.(10分)一个不透明的口袋中有1个大小、质地完全相同的乒乓球,球面上分别标有数-1,2,-3,1.(1)摇匀后任意摸出1个球,则摸出的乒乓球球面上的数是负数的概率为________.(2)摇匀后先从中任意摸出1个球(不放回),再从余下的3个球中任意摸出1个球,用列表或画树状图的方法求两次摸出的乒乓球球面上的数之和是正数的概率.20.(6分)在菱形中,,延长至点,延长至点,使,连结,,延长交于点.(1)求证:;(2)求的度数.21.(6分)对于平面直角坐标系xOy中的点P和图形G,给出如下定义:将点P沿向右或向上的方向平移一次,平移距离为d(d>0)个长度单位,平移后的点记为P′,若点P′在图形G上,则称点P为图形G的“达成点”.特别地,当点P在图形G上时,点P是图形G的“达成点”.例如,点P(﹣1,0)是直线y=x的“达成点”.已知⊙O的半径为1,直线l:y=﹣x+b.(1)当b=﹣3时,①在O(0,0),A(﹣4,1),B(﹣4,﹣1)三点中,是直线l的“达成点”的是:_____;②若直线l上的点M(m,n)是⊙O的“达成点”,求m的取值范围;(2)点P在直线l上,且点P是⊙O的“达成点”.若所有满足条件的点P构成一条长度不为0的线段,请直接写出b的取值范围.22.(8分)如图示,是的直径,点是半圆上的一动点(不与,重合),弦平分,过点作交射线于点.(1)求证:与相切:(2)若,,求长;(3)若,长记为,长记为,求与之间的函数关系式,并求出的最大值.23.(8分)如图,在▱ABCD中,对角线AC、BD相交于点O,点E、F是AD上的点,且AE=EF=FD.连接BE、BF,使它们分别与AO相交于点G、H.(1)求EG:BG的值;(2)求证:AG=OG;(3)设AG=a,GH=b,HO=c,求a:b:c的值.24.(8分)如图,在中,,的平分线交于,为上一点,,以为圆心,以的长为半径画圆.(1)求证:是⊙的切线;(2)求证:.25.(10分)如图,已知直线AB与轴交于点C,与双曲线交于A(3,)、B(-5,)两点.AD⊥轴于点D,BE∥轴且与轴交于点E.(1)求点B的坐标及直线AB的解析式;(2)判断四边形CBED的形状,并说明理由.26.(10分)如图①,在矩形ABCD中,BC=60cm.动点P以6cm/s的速度在矩形ABCD的边上沿A→D的方向匀速运动,动点Q在矩形ABCD的边上沿A→B→C的方向匀速运动.P、Q两点同时出发,当点P到达终点D时,点Q立即停止运动.设运动的时间为t(s),△PDQ的面积为S(cm2),S与t的函数图象如图②所示.(1)AB=cm,点Q的运动速度为cm/s;(2)在点P、Q出发的同时,点O也从CD的中点出发,以4cm/s的速度沿CD的垂直平分线向左匀速运动,以点O为圆心的⊙O始终与边AD、BC相切,当点P到达终点D时,运动同时停止.①当点O在QD上时,求t的值;②当PQ与⊙O有公共点时,求t的取值范围.
参考答案一、选择题(每小题3分,共30分)1、D【解析】根据必然事件的概念(必然事件指在一定条件下一定发生的事件)可判断正确答案.【详解】解:、打开电视,正在播放宜春二套,是随机事件,故错误;、抛一枚硬币,正面朝上是随机事件,故错误;、明天会下雨是随机事件,故错误;、地球绕着太阳转是必然事件,故正确;故选:.【点睛】本题考查的是必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下,一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.2、C【解析】试题解析:∵抛物线的顶点坐标A(1,3),∴抛物线的对称轴为直线x=-=1,∴2a+b=0,所以①正确;∵抛物线开口向下,∴a<0,∴b=-2a>0,∵抛物线与y轴的交点在x轴上方,∴c>0,∴abc<0,所以②错误;∵抛物线的顶点坐标A(1,3),∴x=1时,二次函数有最大值,∴方程ax2+bx+c=3有两个相等的实数根,所以③正确;∵抛物线与x轴的一个交点为(4,0)而抛物线的对称轴为直线x=1,∴抛物线与x轴的另一个交点为(-2,0),所以④错误;∵抛物线y1=ax2+bx+c与直线y2=mx+n(m≠0)交于A(1,3),B点(4,0)∴当1<x<4时,y2<y1,所以⑤正确.故选C.考点:1.二次函数图象与系数的关系;2.抛物线与x轴的交点.3、D【解析】去掉一个最高分和一个最低分对中位数没有影响,故选D.4、B【分析】根据抛物线图像的平移规律“左加右减,上加下减”即可确定平移后的抛物线解析式.【详解】解:将抛物线向上平移3个单位长度,再向右平移2个单位长度,得到的抛物线的解析式为,故选B.【点睛】本题考查了二次函数的平移规律,熟练掌握其平移规律是解题的关键.5、C【分析】根据全等是特殊的相似,即可得到“提出相似三角形的问题和研究方法”是从特殊到一般.【详解】∵全等图形是相似比为1的相似图形,全等是特殊的相似,∴由研究全等三角形的思路,提出相似三角形的问题和研究方法,是从特殊到一般的数学方法.故选C.【点睛】本题主要考查研究相似三角形的数学方法,理解相似三角形和全等三角形的联系,是解题的关键.6、C【分析】根据一元二次方程的解的定义即可求出答案.【详解】解:由题意可知:∴故答案为:C.【点睛】本题考查的知识点是根据一元二次方程的解求代数式的值,解题的关键是将已给代数式进行变形,使之与所给条件有关系,即可得解.7、B【分析】在方程左右两边同时加上一次项系数一半的平方即可.【详解】解:方程两边同时加上一次项系数一半的平方,得到x2﹣2x+1=5+1,即(x﹣1)2=6,故选:B.【点睛】本题考查了配方法,解题的关键是注意:(1)把常数项移到等号的右边;(2)把二次项的系数化为1;(3)等式两边同时加上一次项系数一半的平方.选择用配方法解一元二次方程时,最好使方程的二次项的系数为1,一次项的系数是2的倍数.8、C【分析】逐一分析四个选项,根据二次函数图象的开口方向以及对称轴与y轴的位置关系,即可得出a、b的正负性,由此即可得出一次函数图象经过的象限,即可得出结论.【详解】A.∵二次函数图象开口向下,对称轴在y轴左侧,∴a<0,b<0,∴一次函数图象应该过第二、三、四象限,故本选项错误;B.∵二次函数图象开口向上,对称轴在y轴右侧,∴a>0,b<0,∴一次函数图象应该过第一、三、四象限,故本选项错误;C.∵二次函数图象开口向下,对称轴在y轴左侧,∴a<0,b<0,∴一次函数图象应该过第二、三、四象限,故本选项正确;D.∵二次函数图象开口向下,对称轴在y轴左侧,∴a<0,b<0,∴一次函数图象应该过第二、三、四象限,故本选项错误.故选C.【点睛】本题主要考查二次函数图象与一次函数图象的综合,掌握二次函数与一次函数系数与图象的关系,是解题的关键.9、D【分析】根据圆周角定理求出∠A,根据圆内接四边形的性质计算即可.【详解】由圆周角定理得,∠A=∠BOD=55°,∵四边形ABCD为⊙O的内接四边形,∴∠BCD=180°−∠A=125°,故选:C.【点睛】此题考查圆周角定理及其推论,解题关键在于掌握圆内接四边形的性质.10、B【分析】分别分析各选项的题设是否能推出结论,即可得到答案.【详解】解:A.有意义的取值范围是,故选项A命题错误;B.一组数据的方差越大,这组数据波动性越大,故选项B命题正确;C.若,则的补角为,故选项C命题错误;D.布袋中有除颜色以外完全相同的个黄球和个白球,从布袋中随机摸出一个球是白球的概率为,故选项D命题错误;故答案为B.【点睛】本题考查了命题真假的判断,掌握分析各选项的题设能否退出结论的知识点是解答本题的关键.二、填空题(每小题3分,共24分)11、【解析】由比例的性质即可解答此题.【详解】∵,∴a=b,∴=,故答案为【点睛】此题考查了比例的基本性质,熟练掌握这个性质是解答此题的关键.12、16【解析】根据俯视图标数法可得,最多有1块;故答案是1.点睛:三视图是指一个立体图形从上面、正面、侧面(一般为左侧)三个方向看到的图形,首先我们要分清三个概念:排、列、层,比较好理解,就像我们教室的座位一样,横着的为排,竖着的为列,上下的为层,如图所示的立体图形,共有两排、三列、两层.仔细观察三视图,可以发现在每一图中,并不能同时看到排、列、层,比如正视图看不到排,这个很好理解,比如在教室里,如果第一排的同学个子非常高,那么后面的同学都被挡住了,我们无法从正面看到后面的同学,也就无法确定有几排.所以,我们可以知道正视图可看到列和层,俯视图可看到排和层列,侧视图可看到排和层.13、1【分析】根据同一时刻物体的高度与影长成比例解答即可.【详解】解:设此建筑物的高度为x米,根据题意得:,解得:x=1.故答案为:1.【点睛】本题考查了平行投影,属于基础题型,明确同一时刻物体的高度与影长成比例是解题的关键.14、60°或120°【分析】如下图所示,分两种情况考虑:D点在优弧CDB上或E点在劣弧BC上时,根据三角函数可求出∠OCF的大小,进而求出∠BOC的大小,再由圆周角定理可求出∠D、∠E大小,进而得到弦BC所对的圆周角.【详解】解:分两种情况考虑:D在优弧CDB上或E在劣弧BC上时,可得弦BC所对的圆周角为∠D或∠E,如下图所示,作OF⊥BC,由垂径定理可知,F为BC的中点,∴CF=BF=BC=,又直径为4cm,∴OC=2cm,在Rt△AOC中,cos∠OCF=,∴∠OCF=30°,∵OC=OB,∴∠OCF=∠OBF=30°,∴∠COB=120°,∴∠D=∠COB=60°,又圆内接四边形的对角互补,∴∠E=120°,则弦BC所对的圆周角为60°或120°.故答案为:60°或120°.【点睛】此题考查了圆周角定理,圆内接四边形的性质,锐角三角函数定义,以及特殊角的三角函数值,熟练掌握圆周角定理是解本题的关键.15、k≥﹣1【分析】根据判别式的意义得到△=41+8k≥0,然后解不等式即可.【详解】∵一元二次方程x1+4x﹣1k=0有实数根,∴△=41+8k≥0,解得,k≥﹣1.故答案为:k≥﹣1.【点睛】此题考查了根的判别式,一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(1)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.16、8+2或8﹣2【分析】分两种情况进行解答,即①∠ACB为锐角,②∠ACB为钝角,分别画出图形,利用三角函数解直角三角形即可.【详解】过点A作AD⊥BC,垂足为D,①当∠ACB为锐角时,如图1,在Rt△ABD中,BD=AB•cosB=10×=8,AD==6,在Rt△ACD中,CD==2,∴BC=BD+CD=8+2,②当∠ACB为钝角时,如图2,在Rt△ABD中,BD=AB•cosB=10×=8,AD==6,在Rt△ACD中,CD==2,∴BC=BD﹣CD=8﹣2,故答案为:8+2或8﹣2.【点睛】考查直角三角形的边角关系,理解锐角三角函数的意义是正确解答的关键,分类讨论在此类问题中经常用到.17、1【分析】根据比例尺的意义,可得答案.【详解】解:,故答案为:1.【点睛】本题考查了比例尺,利用比例尺的意义是解题关键,注意把厘米化成千米.18、1【解析】利用底面周长=展开图的弧长可得.【详解】解:设这个扇形铁皮的半径为rcm,由题意得=π×80,解得r=1.故这个扇形铁皮的半径为1cm,故答案为1.【点睛】本题考查了圆锥的计算,解答本题的关键是确定圆锥的底面周长=展开图的弧长这个等量关系,然后由扇形的弧长公式和圆的周长公式求值.三、解答题(共66分)19、(1);(2)【分析】(1)直接利用概率公式计算;(2)画树状图展示所有12种等可能的结果数,找出两次摸出的乒乓球球面上的数之和是正数的结果数,然后根据公式求解.【详解】(1)摇匀后任意摸出1个球,则摸出的乒乓球球面上的数是负数的概率;故答案为;(2)画树状图为:共有12种等可能的结果数,其中两次摸出的乒乓球球面上的数之和是正数的结果数为8,所以两次摸出的乒乓球球面上的数之和是正数的概率.【点睛】本题考查了列表法与树状图法,解题的关键是掌握列表法与树状图法求公式.20、(1)见详解;(2)60°【分析】(1)先判断出△ABC是等边三角形,由等边三角形的性质可得BC=AC,∠ACB=∠ABC,再求出CE=BF,然后利用“边角边”证明即可;
(2)由△ACE≌△CBF,根据全等三角形对应角相等可得∠E=∠F,然后根据三角形的一个外角等于与它不相邻的两个内角的和求出∠CGE=∠ABC即可.【详解】(1)证明:∵菱形,,∴是等边三角形,∴,,∵,∴,即,在和中,∵,∴.(2)解:∵,∴,∵,∴,∴,∵,∴.【点睛】本题考查了全等三角形的判定与性质,等边三角形的判定与性质,菱形的性质等知识;熟记性质并确定出三角形全等的条件是解题的关键21、(1)①A,B;②﹣4≤m≤﹣2或﹣1≤m≤1;(2)﹣2≤b<.【分析】(1)①根据“达成点”的定义即可解决问题.②过点(0,1)和点(0,﹣1)作x轴的平行线分别交直线l于M1,M2,过点(1,0)和点(﹣1,0)作y轴的平行线分别交直线l于M3,M4,由此即可判断.(2)当M2与M3重合,坐标为(﹣1,﹣1)时,﹣1=1+b,可得b=﹣2;当直线l与⊙O相切时,设切点为E,交y轴于F,求出点E的坐标,即可判断.【详解】(1)①∵b=﹣3时,直线l:y=﹣x﹣3,∴直线l与x轴的交点为:(﹣3,0),直线l与y轴的交点为:(0,﹣3),∴O(0,0)在直线l的上方,∴O(0,0)不是直线l的“达成点”,∵当x=﹣4时,y=4﹣3=1,∴点A(﹣4,1)在直线l上,∴点A是直线l的“达成点”,∵点B(﹣4,﹣1)在直线l的下方,把点B(﹣4,﹣1)向上平移2个长度单位为(﹣4,1),∴点B是直线l的“达成点”,故答案为:A,B;②设直线l:y=﹣x﹣3,分别与直线y=1、y=﹣1、x=﹣1、x=1依次交于点M1、M2、M3、M4,如图1所示:则点M1,M2,M3,M4的横坐标分别为﹣4、﹣2、﹣1、1,线段M1M2上的点向右的方向平移与⊙O能相交,线段M3M4上的点向上的方向平移与⊙O能相交,∴线段M1M2和线段M3M4上的点是⊙O的“达成点”,∴m的取值范围是﹣4≤m≤﹣2或﹣1≤m≤1;(2)如图2所示:当M2与M3重合,坐标为(﹣1,﹣1)时,﹣1=1+b,∴b=﹣2;②当直线l与⊙O相切时,设切点为E,交y轴于F.由题意,在Rt△OEF中,∠OEF=90°,OE=1,∠EOF=45°,∴△OEF是等腰直角三角形,∴OF=OE=;观察图象可知满足条件的b的值为﹣2≤b<.【点睛】本题是圆的综合题,考查了直线与圆的位置关系,点P为图形G的“达成点”的定义、等腰直角三角形的判定与性质、切线的性质等知识,解题的关键是理解题意,属于中考压轴题.22、(1)详见解析;(2)4;(3)【分析】(1)首先连接,通过半径和角平分线的性质进行等角转换,得出,进而得出,即可得证;(2)首先连接,得出,进而得出,再根据勾股定理得出DE;(3)首先连接,过点作,得出,再得,进而得出,然后构建二次函数,即可得出其最大值.【详解】(1)证明:连接∵∴∵平分∴∴∴∵∴又∵是的半径∴与相切(2)解:连接∵AB为直径∴∠ADB=90°∵∴∴∴∴中(3)连接,过点作于∵,DE⊥AE,AD=AD∴∴,DE=DG∴∴∴即:∴∴根据二次函数知识可知:当时,【点睛】此题主要考查直线与圆的位置关系、相似三角形的判定与性质以及全等三角形的判定与性质与二次函数的综合应用,熟练掌握,即可解题.23、(1)1:3;(1)见解析;(3)5:3:1.【分析】(1)根据平行四边形的性质可得AO=AC,AD=BC,AD∥BC,从而可得△AEG∽△CBG,由AE=EF=FD可得BC=3AE,然后根据相似三角形的性质,即可求出EG:BG的值;(1)根据相似三角形的性质可得GC=3AG,则有AC=4AG,从而可得AO=AC=1AG,即可得到GO=AO﹣AG=AG;(3)根据相似三角形的性质可得AG=AC,AH=AC,结合AO=AC,即可得到a=AC,b=AC,c=AC,就可得到a:b:c的值.【详解】(1)∵四边形ABCD是平行四边形,∴AO=AC,AD=BC,AD∥BC,∴△AEG∽△CBG,∴.∵AE=EF=FD,∴BC=AD=3AE,∴GC=3AG,GB=3EG,∴EG:BG=1:3;(1)∵GC=3AG(已证),∴AC=4AG,∴AO=AC=1AG,∴GO=AO﹣AG=AG;(3)∵AE=EF=FD,∴BC=AD=3AE,AF=1AE.∵AD∥BC,∴△AFH∽△CBH,∴,∴=,即AH=AC.∵AC=4AG,∴a=AG=AC,b=AH﹣AG=AC﹣AC=AC,c=AO﹣AH=AC﹣AC=AC,∴a:b:c=::=5:3:1.24、(1)证明见解析;(2)证明见解析.【分析】(1)过点D作DF⊥AC于F,求出BD=DF等于半径,得出AC是⊙D的切线;(2)先证明△BDE≌△FCD(HL),根据全等三角形对应边相等及切线的性质的AB=AF,得出AB+EB=AC.【详解】证明:(1)过点作于;∵,以为圆心,以的长为半径画圆,∴AB为圆D的切线又∵,且AD平分∠BAC,且DF⊥AC,是⊙的切线.(2)由,DB是半径得AB的是⊙O的切线,又由(1)可知是⊙的切线∵,∴即.【点睛】本题考查的是切线的判定:经过半径的外端且垂直于这条半径的直线是圆的切线;及全等三角形的判断,全等三角形的对应边相等.25、(1)点B的坐标是(-5,-4);直线AB的解析式为:(2)四边形CBED是菱形.理由见解析【解析】(1)根据反比例函数图象上点的坐标特征,将点A代入双曲线方程求得k值,即利用待定系数法求得双曲线方程;然后将B点代入其中,从而求得a值;设直线AB的解析式为y=mx+n,将A、B两点的坐标代入,利用待定系数法解答;(2)由点C、D的坐标、已知条件“BE∥x轴”及两点间的距离公式求得,CD=5,BE=5,且BE∥CD,从而可以证明四边形CBED是平行四边形;然后在Rt△OED中根据勾股定理求得ED=5,所以ED=CD,从而证明四边形CBED是菱形.【详解】解:(1)∵双曲线过A(3,),∴.把B(-5,)代入,得.∴点B的坐标是(-5,-4)设直线AB的解析式为,将A(3,)、B(-5,-4)代入得,,解得:.∴直线AB的解析式为:(2)四边形CBED是菱形.理由如下:点D的坐标是(3,0),点C的坐标是(-2,0).∵BE∥轴,∴点E的坐标是(0,-4).而CD=5,BE=5,且BE∥CD.∴四边形CBED是平行四边形在Rt△OED中,ED2=OE2+OD2,∴ED==5,∴ED=CD.∴□CBED是菱
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 山东省济南市莱芜区市级名校2024-2025学年初三年级第一次质量检测试题物理试题含解析
- 二手房屋交易定金合同范本
- 应收账款质押合同
- 特许经营合同与市场监管
- 2025年海南省保亭黎族苗族自治县中考三模道德与法治试题(含答案)
- 健身房转让协议
- 幼儿舞蹈表演形式
- 影视后期特效项目教程课件 项目1 不忘初心青春无悔
- 第三章第三节海陆变迁 教学设计-2024-2025学年湘教版七年级地理上册
- WST661-2020静脉血液标本采集指南理论考核试题
- GB/T 15923-2010镍矿石化学分析方法镍量测定
- 广西玉林市容县十里中学九年级化学 酸碱盐复习课件 人教新课标版
- 30电导率仪作业指导书
- 给水厂毕业设计正文(全)
- 初高中生物衔接课课件
- KET词汇表(英文中文完整版)
- JJF(闽)1097-2020总溶解固体(TDS)测定仪校准规范-(现行有效)
- 推拉门定制安装合同协议书范本
- 麦迪床边重症系统操作指南
- 机械完整性专题知识讲座
- 《生态环境规划》课程教学大纲
评论
0/150
提交评论