版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年九上数学期末模拟试卷注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(每题4分,共48分)1.抛物线的顶点坐标()A.(-3,4) B.(-3,-4) C.(3,-4) D.(3,4)2.已知是方程的一个解,则的值是()A.±1 B.0 C.1 D.-13.下表是一组二次函数的自变量x与函数值y的对应值:
1
1.1
1.2
1.3
1.4
-1
-0.49
0.04
0.59
1.16
那么方程的一个近似根是()A.1 B.1.1 C.1.2 D.1.34.若二次函数的图象的顶点在第一象限,且经过点(0,1)和(-1,0),则的值的变化范围是()A. B. C. D.5.如图,平行于BC的直线DE把△ABC分成面积相等的两部分,则的值为()A.1 B. C.-1 D.+16.在△ABC中,∠A=120°,AB=4,AC=2,则sinB的值是()A. B. C. D.7.如图,在Rt△ABC中,∠BAC=90°.将Rt△ABC绕点C按逆时针方向旋转48°得到Rt△A′B′C,点A在边B′C上,则∠B′的大小为()A.42° B.48°C.52° D.58°8.如图,AB是半圆的直径,AB=2r,C、D为半圆的三等分点,则图中阴影部分的面积是()。A.πr2 B.πr2 C.πr2 D.πr29.如图,⊙O的圆周角∠A=40°,则∠OBC的度数为()A.80° B.50° C.40° D.30°10.如图,将绕点A按顺时针旋转一定角度得到,点B的对应点D恰好落在BC边上.若,则CD的长为()A.1 B. C. D.211.如图,丁轩同学在晚上由路灯AC走向路灯BD,当他走到点P时,发现身后他影子的顶部刚好接触到路灯AC的底部,当他向前再步行20
m到达Q点时,发现身前他影子的顶部刚好接触到路灯BD的底部,已知丁轩同学的身高是1.5
m,两个路灯的高度都是9
m,则两路灯之间的距离是()
A.24
m B.25
m C.28
m D.30
m12.如图,是的直径,是的弦,已知,则的度数为()A. B. C. D.二、填空题(每题4分,共24分)13.如图,某商店营业大厅自动扶梯AB的倾斜角为31°,AB的长为12米,则大厅两层之间的高度为______米.(结果保留两个有效数字)(参考数据;sin31°=0.515,cos31°=0.857,tan31°=0.601)14.已知抛物线经过点、,那么此抛物线的对称轴是___________.15.已知二次函数,用配方法化为的形式为_________________,这个二次函数图像的顶点坐标为____________.16.如图,在中,,,为边上的一点,且,若的面积为,则的面积为__________.17.布袋中装有3个红球和4个白球,它们除颜色外其余都相同,如果从这个布袋里随机摸出一个球,那么所摸到的球恰好为红球的概率是_______.18.若,则=_____.三、解答题(共78分)19.(8分)如图,△OAB和△OCD中,OA=OB,OC=OD,∠AOB=∠COD=α,AC、BD交于M(1)如图1,当α=90°时,∠AMD的度数为°(2)如图2,当α=60°时,∠AMD的度数为°(3)如图3,当△OCD绕O点任意旋转时,∠AMD与α是否存在着确定的数量关系?如果存在,请你用表示∠AMD,并图3进行证明;若不确定,说明理由.20.(8分)分别用定长为a的线段围成矩形和圆.(1)求围成矩形的面积的最大值;(用含a的式子表示)(2)哪种图形的面积更大?为什么?21.(8分)解方程:(1)x1﹣1x﹣3=0;(1)3x1﹣6x+1=1.22.(10分)如图,在等腰直角三角形ABC中,D是AB的中点,E,F分别是AC,BC.上的点(点E不与端点A,C重合),且连接EF并取EF的中点O,连接DO并延长至点G,使,连接DE,DF,GE,GF(1)求证:四边形EDFG是正方形;(2)直接写出当点E在什么位置时,四边形EDFG的面积最小?最小值是多少?23.(10分)已知△ABC是等腰三角形,AB=AC.(1)特殊情形:如图1,当DE∥BC时,有DBEC.(填“>”,“<”或“=”)(2)发现探究:若将图1中的△ADE绕点A顺时针旋转α(0°<α<180°)到图2位置,则(1)中的结论还成立吗?若成立,请给予证明;若不成立,请说明理由.(3)拓展运用:如图3,P是等腰直角三角形ABC内一点,∠ACB=90°,且PB=1,PC=2,PA=3,求∠BPC的度数.24.(10分)国家创新指数是反映一个国家科学技术和创新竞争力的综合指数.对国家创新指数得分排名前40的国家的有关数据进行收集、整理、描述和分析.下面给出了部分信息:a.国家创新指数得分的频数分布直方图(数据分成7组:30≤x<40,40≤x<50,50≤x<60,60≤x<70,70≤x<80,80≤x<90,90≤x≤100);b.国家创新指数得分在60≤x<70这一组的是:61.762.463.665.966.468.569.169.369.5c.40个国家的人均国内生产总值和国家创新指数得分情况统计图:d.中国的国家创新指数得分为69.5.(以上数据来源于《国家创新指数报告(2018)》)根据以上信息,回答下列问题:(1)中国的国家创新指数得分排名世界第______;(2)在40个国家的人均国内生产总值和国家创新指数得分情况统计图中,包括中国在内的少数几个国家所对应的点位于虚线的上方.请在图中用“”圈出代表中国的点;(3)在国家创新指数得分比中国高的国家中,人均国内生产总值的最小值约为______万美元;(结果保留一位小数)(4)下列推断合理的是______.①相比于点A,B所代表的国家,中国的国家创新指数得分还有一定差距,中国提出“加快建设创新型国家”的战略任务,进一步提高国家综合创新能力;②相比于点B,C所代表的国家,中国的人均国内生产总值还有一定差距,中国提出“决胜全面建成小康社会”的奋斗目标,进一步提高人均国内生产总值.25.(12分)如图,在平面直角坐标系中,直线与轴交于点,与轴交于点且与反比例函数在第一象限的图象交于点轴于点.根据函数图象,直接写出当反比例函数的函数值时,自变量的取值范围;动点在轴上,轴交反比例函数的图象于点.若.求点的坐标.26.网络购物已成为新的消费方式,催生了快递行业的高速发展,某小型的快递公司,今年5月份与7月份完成快递件数分别为5万件和5.832份万件,假定每月投递的快递件数的增长率相同.(1)求该快递公司投递的快递件数的月平均增长率;(2)如果每个快递小哥平均每月最多可投递0.8万件,公司现有8个快递小哥,按此快递增长速度,不增加人手的情况下,能否完成今年9月份的投递任务?
参考答案一、选择题(每题4分,共48分)1、D【解析】根据抛物线顶点式的特点写出顶点坐标即可得.【详解】因为是抛物线的顶点式,根据顶点式的坐标特点,顶点坐标为(3,4),故选D.【点睛】本题考查了抛物线的顶点,熟练掌握抛物线顶点式的特点是解题的关键.2、A【分析】利用一元二次方程解得定义,将代入得到,然后解关于的方程.【详解】解:将代入得到,解得故选A【点睛】本题考查了一元二次方程的解.3、C【详解】解:观察表格得:方程x2+3x﹣5=0的一个近似根为1.2,故选C考点:图象法求一元二次方程的近似根.4、A【分析】代入两点的坐标可得,,所以,由抛物线的顶点在第一象限可得且,可得,再根据、,可得S的变化范围.【详解】将点(0,1)代入中可得将点(-1,0)代入中可得∴∵二次函数图象的顶点在第一象限∴对称轴且∴∵,∴∴故答案为:A.【点睛】本题考查了二次函数的系数问题,掌握二次函数的性质以及各系数间的关系是解题的关键.5、C【解析】由DE∥BC可得出△ADE∽△ABC,利用相似三角形的性质结合S△ADE=S四边形BCED,可得出,结合BD=AB﹣AD即可求出的值.【详解】∵DE∥BC,∴∠ADE=∠B,∠AED=∠C,∴△ADE∽△ABC,∴,∵S△ADE=S四边形BCED,S△ABC=S△ADE+S四边形BCED,∴,∴,故选C.【点睛】本题考查了相似三角形的判定与性质,牢记相似三角形的面积比等于相似比的平方是解题的关键.6、B【解析】试题解析:延长BA过点C作CD⊥BA延长线于点D,∵∠CAB=120°,∴∠DAC=60°,∴∠ACD=30°,∵AB=4,AC=2,∴AD=1,CD=,BD=5,∴BC==2,∴sinB=.故选B.7、A【解析】试题分析:∵在Rt△ABC中,∠BAC=90°,将Rt△ABC绕点C按逆时针方向旋转48°得到Rt△A′B′C′,∴∠A′=∠BAC=90°,∠ACA′=48°,∴∠B′=90°﹣∠ACA′=42°.故选A.考点:旋转的性质.8、D【分析】连接OC、OD,利用同底等高的三角形面积相等可知阴影部分的面积等于扇形OCD的面积,然后计算扇形面积就可.【详解】连接OC、OD.∵点C,D为半圆的三等分点,AB=1r,∴∠AOC=∠BOD=∠COD=180°÷3=60°,OA=r.∵OC=OD,∴△COD是等边三角形,∴∠OCD=60°,∴∠OCD=∠AOC=60°,∴CD∥AB,∴△COD和△CDA等底等高,∴S△COD=S△ACD,∴阴影部分的面积=S扇形CODπr1.故选D.【点睛】本题考查了扇形面积求法,利用已知得出理解阴影部分的面积等于扇形OCD的面积是解题的关键.9、B【分析】然后根据圆周角定理即可得到∠OBC的度数,由OB=OC,得到∠OBC=∠OCB,根据三角形内角和定理计算出∠OBC.【详解】∵∠A=40°.
∴∠BOC=80°,
∵OB=OC,
∴∠OBC=∠OCB=50°,
故选:B.【点睛】本题考查了圆周角定理:一条弧所对的圆周角是它所对的圆心角的一半;也考查了等腰三角形的性质以及三角形的内角和定理.10、D【分析】由直角三角形的性质可得AB=2,BC=2AB=4,由旋转的性质可得AD=AB,可证△ADB是等边三角形,可得BD=AB=2,即可求解.【详解】解:∵AC=,∠B=60°,∠BAC=90°
∴AB=2,BC=2AB=4,
∵Rt△ABC绕点A按顺时针旋转一定角度得到Rt△ADE,
∴AD=AB,且∠B=60°
∴△ADB是等边三角形
∴BD=AB=2,
∴CD=BC-BD=4-2=2
故选:D.【点睛】本题考查了旋转的性质,等边三角形的判定和性质,直角三角形的性质,熟练运用旋转的性质是本题的关键.11、D【解析】由题意可得:EP∥BD,所以△AEP∽△ADB,所以,因为EP=1.5,BD=9,所以,解得:AP=5,因为AP=BQ,PQ=20,所以AB=AP+BQ+PQ=5+5+20=30,故选D.点睛:本题主要考查相似三角形的对应边成比例在解决实际问题中的应用,应用相似三角形可以间接地计算一些不易直接测量的物体的高度和宽度,解题时关键是找出相似三角形,然后根据对应边成比例列出方程,建立适当的数学模型来解决问题.12、C【分析】根据圆周角定理即可解决问题.【详解】∵,∴.故选:C.【点睛】本题考查圆周角定理,解题的关键是熟练掌握基本知识,属于中考常考题型.二、填空题(每题4分,共24分)13、6.2【分析】根据题意和锐角三角函数可以求得BC的长,从而可以解答本题.【详解】解:在Rt△ABC中,∵∠ACB=90°,∴BC=AB•sin∠BAC=12×0.515≈6.2(米),答:大厅两层之间的距离BC的长约为6.2米.故答案为6.2.【点睛】本题考查解直角三角形的应用,解答本题的关键是明确题意,找出所求问题需要的条件,利用锐角三角函数和数形结合的思想解答.14、直线【分析】根据点A、B的纵坐标相等判断出A、B关于对称轴对称,然后列式计算即可得解.【详解】解:∵点、的纵坐标都是5相同,∴抛物线的对称轴为直线.故答案为:直线.【点睛】此题考查二次函数的性质,观察出A、B是对称点是解题的关键.15、【分析】先利用配方法提出二次项的系数,再加上一次项系数的一半的平方来凑完全平方式,再根据顶点式即可得到顶点的坐标.【详解】利用完全平方公式得:由此可得顶点坐标为.【点睛】本题考查了用配方法将二次函数的一般式转化为顶点式、以及二次函数顶点坐标,熟练运用配方法是解题关键.16、1【分析】首先判定△ADC∽△BAC,然后得到相似比,根据面积比等于相似比的平方可求出△BAC的面积,减去△ADC的面积即为△ABD的面积.【详解】∵∠CAD=∠B,∠C=∠C∴△ADC∽△BAC∴相似比则面积比∴∴故答案为:1.【点睛】本题考查了相似三角形的判定与性质,熟记相似三角形的面积比等于相似比的平方是解题的关键.17、【分析】由题意根据概率公式,求摸到红球的概率,即用红球除以小球总个数即可得出得到红球的概率.【详解】解:∵一个布袋里装有3个红球和4个白球,共7个球,∴摸出一个球摸到红球的概率为:,故答案为:.【点睛】本题主要考查概率公式的应用,由已知求出小球总个数再利用概率公式求出是解决问题的关键.18、【解析】=.三、解答题(共78分)19、(1)1;(2)2;(3)∠AMD=180°﹣α,证明详见解析.【解析】(1)如图1中,设OA交BD于K.只要证明△BOD≌△AOC,推出∠OBD=∠OAC,由∠AKM=∠BKO,可得∠AMK=∠BOK=1°;(2)如图2中,设OA交BD于K.只要证明△BOD≌△AOC,推出∠OBD=∠OAC,由∠AKM=∠BKO,推出∠AMK=∠BOK=2°;(3)如图3中,设OA交BD于K.只要证明△BOD≌△AOC,可得∠OBD=∠OAC,由∠AKO=∠BKM,推出∠AOK=∠BMK=α.可得∠AMD=180°-α.【详解】(1)如图1中,设OA交BD于K.∵OA=OB,OC=OD,∠AOB=∠COD=α,∴∠BOD=∠AOC,∴△BOD≌△AOC,∴∠OBD=∠OAC,∵∠AKM=∠BKO,∴∠AMK=∠BOK=1°.故答案为1.(2)如图2中,设OA交BD于K.∵OA=OB,OC=OD,∠AOB=∠COD=α,∴∠BOD=∠AOC,∴△BOD≌△AOC,∴∠OBD=∠OAC,∵∠AKM=∠BKO,∴∠AMK=∠BOK=2°.故答案为2.(3)如图3中,设OA交BD于K.∵OA=OB,OC=OD,∠AOB=∠COD=α,∴∠BOD=∠AOC,∴△BOD≌△AOC,∴∠OBD=∠OAC,∵∠AKO=∠BKM,∴∠AOK=∠BMK=α.∴∠AMD=180°﹣α.【点睛】本题考查几何变换综合题、等腰三角形的性质等知识,解题的关键是灵活运用所学知识解决问题,学会利用:“8字型”证明角相等.20、(1)矩形面积的最大值为;(2)圆的面积大.【分析】(1)设矩形的一边长为b,则另外一边长为b,由S矩形=b(b)=﹣(b)2可得答案;(2)设圆的半径为r,则r,知S圆=πr2,比较大小即可得.【详解】(1)设矩形的一边长为b,则另外一边长为b,S矩形=b(b)=﹣(b)2,∴矩形面积的最大值为;(2)设圆的半径为r,则r,S圆=πr2.∵4π<16,∴,∴S圆>S矩,∴圆的面积大.【点睛】本题考查了列代数式与二次函数的最值,用到的知识点是圆的面积公式、矩形的面积公式、二次函数的最值,关键是根据题意列出代数式.21、(1)x1=3,x1=﹣1;(1)x1=,x1=【分析】(1)利用因式分解法求解可得;
(1)整理为一般式,再利用公式法求解可得.【详解】解:(1)原方程可以变形为(x﹣3)(x+1)=0,∴x﹣3=0,x+1=0,∴x1=3,x1=﹣1;(1)方程整理为一般式为3x1﹣6x﹣1=0,∵a=3,b=﹣6,c=﹣1,∴=36﹣4×3×(﹣1)=48>0,则,即.【点睛】本题考查了解一元二次方程,应熟练掌握解一元二次方程的几种常用方法:直接开平方法、因式分解法、公式法、配方法,结合方程的特点选择合适、简便的方法是解题的关键.22、(1)详见解析;(2)当点E为线段AC的中点时,四边形EDFG的面积最小,该最小值为4【解析】(1)连接CD,根据等腰直角三角形的性质可得出∠A=∠DCF=45°、AD=CD,结合AE=CF可证出△ADE≌△CDF(SAS),根据全等三角形的性质可得出DE=DF、ADE=∠CDF,通过角的计算可得出∠EDF=90°,再根据O为EF的中点、GO=OD,即可得出GD⊥EF,且GD=2OD=EF,由此即可证出四边形EDFG是正方形;(2)过点D作DE′⊥AC于E′,根据等腰直角三角形的性质可得出DE′的长度,从而得出2≤DE<2,再根据正方形的面积公式即可得出四边形EDFG的面积的最小值.【详解】(1)证明:连接CD,如图1所示.∵为等腰直角三角形,,D是AB的中点,∴在和中,∴,∴,∵,∴,∴为等腰直角三角形.∵O为EF的中点,,∴,且,∴四边形EDFG是正方形;(2)解:过点D作于E′,如图2所示.∵为等腰直角三角形,,∴,点E′为AC的中点,∴(点E与点E′重合时取等号).∴∴当点E为线段AC的中点时,四边形EDFG的面积最小,该最小值为4【点睛】本题考查了正方形的判定与性质、等腰直角三角形以及全等三角形的判定与性质,解题的关键是:(1)找出GD⊥EF且GD=EF;(2)根据正方形的面积公式找出4≤S四边形EDFG<1.23、(1)=;(2)成立,证明见解析;(3)135°.【分析】试题(1)由DE∥BC,得到,结合AB=AC,得到DB=EC;(2)由旋转得到的结论判断出△DAB≌△EAC,得到DB=CE;(3)由旋转构造出△CPB≌△CEA,再用勾股定理计算出PE,然后用勾股定理逆定理判断出△PEA是直角三角形,再简单计算即可.【详解】(1)∵DE∥BC,∴,∵AB=AC,∴DB=EC,故答案为=,(2)成立.证明:由①易知AD=AE,∴由旋转性质可知∠DAB=∠EAC,又∵AD=AE,AB=AC∴△DAB≌△EAC,∴DB=CE,(3)如图,将△CPB绕点C旋转90°得△CEA,连接PE,∴△CPB≌△CEA,∴CE=CP=2,AE=BP=1,∠PCE=90°,∴∠CEP=∠CPE=45°,在Rt△PCE中,由勾股定理可得,PE=,在△PEA中,PE2=()2=8,AE2=12=1,PA2=32=9,∵PE2+AE2=AP2,∴△PEA是直角三角形∴∠PEA=90°,∴∠CEA=135°,又∵△CPB≌△CEA∴∠BPC=∠CEA=135°.【点睛】考点:几何变换综合题;平行线平行线分线段成比例.24、(1)17;(2)如图所示,见解析;(3)2.8;(4)①②.【分析】(1)由国家创新指数得分为69.5以上(含69.5)的国家有17个,即可得出结果;
(2)根据中国在虚线l1的上方,中国的创新指数得分为69.5,找出该点即可;
(3)根据40个国家的人均国内生产总值和国家创新指数得分情况统计图,即可得出结果;
(4)根据40个国家的人均国内生产总值和国家创新指数得分情况统计图,即可判断①②的合理性.【详解】解:(1)∵国家创新指数得分为69.5以上(含69.5)的国家有17个,
∴国家创新指数得分排名前40的国家中,中国的国家创新指数得分排名世界第17,
故答案为17;
(2)如图所示:
(3)由40个国家的人均国内生产总值和国家创新指数得分情况统计图可知,在国家创新指数得分比中国高的国家中,人均国内生产总值的最小值约为2.8万美元;
故答案为2.8;
(4)由40个国家的人均国内生产总值和国家创新指数得分情况统计图可知,
①相比
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 土石方承包合同书范文(6篇)
- 医院核酸采集工作人员先进事迹(5篇)
- 溯源数据区块链应用-洞察分析
- 探究元宇宙玩具发展趋势-洞察分析
- 艺术家个人品牌构建-洞察分析
- 研究团队协作模式-洞察分析
- 新型驱动系统开发-洞察分析
- 维护质量改进策略-洞察分析
- 《住宅建筑节能设计》课件
- 反校园欺凌活动总结范文(6篇)
- 食品安全与卫生智慧树知到期末考试答案2024年
- T-CPHA 9-2022 智慧港口等级评价指南集装箱码头
- 江苏省南京市秦淮外国语学校2023-2024学年八年级下学期英语3月月考试卷
- 建筑工程分部分项工程划分表(新版)
- 学生职业生涯规划指导方案
- 血栓风险评估及个体化干预(遗传性易栓症风险基因检测)
- b族链球菌孕妇的护理
- 生产工艺验证方案(药品)
- 广东省深圳市宝安、罗湖、福田、龙华四区2023-2024学年数学九年级第一学期期末联考试题含解析
- 《人生需要规划》课件
- 小学三年级语文教研活动记录表1
评论
0/150
提交评论