高中数学必修3教学设计数学:23《变量间的相关关系》_第1页
高中数学必修3教学设计数学:23《变量间的相关关系》_第2页
高中数学必修3教学设计数学:23《变量间的相关关系》_第3页
高中数学必修3教学设计数学:23《变量间的相关关系》_第4页
高中数学必修3教学设计数学:23《变量间的相关关系》_第5页
已阅读5页,还剩3页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

§2.3变量间的相关关系学习目标(1)通过具体示例引导学生考察变量之间的关系,在讨论的过程中认识现实世界中存在着不能用函数模型描述的变量关系,从而体会研究变量之间的相关关系的重要性.(2)通过收集现实问题中两个有关联变量的数据作出散点图,并利用散点图直观认识变量间的相关关系.会作散点图,并对变量间的正相关或负相关关系作出直观判断.(3)在解决统计问题的过程中,进一步体会用样本估计总体的思想,理解统计的作用.重点难点重点:利用散点图直观认识变量间的相关关系.难点:理解变量间的相关关系.学法指导在解决统计问题的过程中,进一步体会用样本估计总体的思想,理解数形结合的数学思想和逻辑推理的数学方法。问题探究复习回顾:函数的定义二、情景设置:客观事物是相互联系的,过去研究的大多数是因果关系,但实际上更多存在的是一种非因果关系.在中学校园里,有这样一种说法:“如果你的数学成绩好,那么你的物理学习就不会有什么大问题.”按照这种说法,似乎学生的物理成绩与数学成绩之间存在着某种关系,我们把数学成绩和物理成绩看成是两个变量,那么这两个变量之间的关系是函数关系吗?二、探究新知:知识探究(一):变量之间的相关关系思考1:考察下列问题中两个变量之间的关系:(1)商品销售收入与广告支出经费;(2)粮食产量与施肥量;(3)人体内的脂肪含量与年龄.这些问题中两个变量之间的关系是函数关系吗?思考2:“名师出高徒”可以解释为教师的水平越高,学生的水平就越高,那么学生的学业成绩与教师的教学水平之间的关系是函数关系吗?你能举出类似的描述生活中两个变量之间的这种关系的成语吗?思考3:上述两个变量之间的关系是一种非确定性关系,称之为相关关系,那么相关关系的含义如何?思考4:相关关系与函数关系的异同点:总结:对相关关系的理解应当注意以下几点:其一是相关关系与函数关系不同.因为函数关系是一种非常确定的关系,而相关关系是一种非确定性关系,即相关关系是非随机变量与随机变量之间的关系.而函数关系可以看成是两个非随机变量之间的关系.因此,不能把相关关系等同于函数关系.其二是函数关系是一种因果关系,而相关关系不一定是因果关系,也可能是伴随关系.例如,有人发现,对于在校儿童,鞋的大小与阅读能力有很强的相关关系.然而,学会新词并不能使脚变大,而是涉及到第三个因素——年龄.当儿童长大一些,他们的阅读能力会提高而且由于长大脚也变大.其三是在现实生活中存在着大量的相关关系,如何判断和描述相关关系,统计学发挥着非常重要的作用.变量之间的相关关系带有不确定性,这需要通过收集大量的数据,对数据进行统计分析,发现规律,才能作出科学的判断.(对具有相关关系的两个变量进行统计分析的方法叫回归分析.)知识探究(二):散点图【问题】在一次对人体脂肪含量和年龄关系的研究中,研究人员获得了一组样本数据:……课本85页的探究。思考1:描述一下散点图的含义。思考2:从上面问题的散点图中说明人的年龄的与人体脂肪含量具有什么相关关系?思考3:正相关和负相关的定义是什么?它们各有什么特征?(1)正相关:散点图中的点散布在从到的区域。(2)负相关:散点图中的点散布在从到的区域。思考4:你能列举一些生活中的变量成正相关或负相关的实例吗?三、典例分析:例1在下列两个变量的关系中,哪些是相关关系?①正方形边长与面积之间的关系;②作文水平与课外阅读量之间的关系;③人的身高与年龄之间的关系;④降雪量与交通事故的发生率之间的关系.例2以下是某地搜集到的新房屋的销售价格和房屋的面积的数据:房屋面积(平方米)617011511080135105销售价格(万元)12.215.324.821.618.429.222画出数据对应的散点图,并指出销售价格与房屋面积这两个变量是正相关还是负相关. 例3、某小卖部为了了解热茶销售量与气温之间的关系,随机统计并制作了某6天卖出热茶的杯数与当天气温的对照表:根据上述数据,气温与热茶销售量之间的有怎样的关系?气温/C261813104杯数202434385064知识探究(三):线性回归一、回归直线方程的推导思考1:人体脂肪含量和年龄关系散点图中点的分布从整体上看有何特点?思考2:如何描述这些特点?(1)回归直线:观察散点图的特征,如果各点大致分布在附近,就称两个变量之间具有线性相关的关系,这条直线叫做回归直线。(2)回归方程:对应的方程叫做回归方程。思考3:回归直线方程的推导:我们该怎样来求出这个回归方程?请同学们展开讨论,能得出哪些具体的方案?方案1、先画出一条直线,测量出各点与它的距离,再移动直线,到达一个使距离的和最小时,测出它的斜率和截距,得回归方程。202520253035404550556065年龄脂肪含量0510152025303540方案2、在图中选两点作直线,使直线两侧的点的个数基本相同。2020253035404550556065年龄脂肪含量0510152025303540方案3、如果多取几对点,确定多条直线,再求出这些直线的斜率和截距的平均值作为回归直线的斜率和截距。而得回归方程。2020253035404550556065年龄脂肪含量0510152025303540我们还可以找到更多的方法,但这些方法都可行吗?科学吗?准确吗?怎样的方法是最好的?思考4:如何求解最有代表性的直线方程?①假设已经得到两个具有线性相关关系的变量的一组数据,,┉。②设所求回归方程为其中,是待定参数。③由最小二乘法得其中:是回归方程的,是。注:1、各点到该直线的距离的平方和最小,这一方法叫最小二乘法。2、我们把由一个变量的变化去推测另一个变量的方法称为回归方法。二、求线性回归方程例2:观察两相关变量得如下表:x-1-2-3-4-553421y-9-7-5-3-115379求两变量间的回归方程解:列表i12345678910

-1-2-3-4-553421

-9-7-5-3-115379

9141512551512149计算,得∴所求回归直线方程为y=x小结:求线性回归直线方程的步骤:第一步:画出散点图,判断是否具有相关关系第二步:列表;第三步:计算第四步:代入公式计算b,a的值;第五步:写出直线方程。三、利用线性回归方程对总体进行估计例:有一个同学家开了一个小卖部,他为了研究气温对热饮销售的影响,经过统计,得到一个卖出的热饮杯数与当天气温的对比表:

温度-504712151923273136

杯数15615013212813011610489937654(1)画出散点图;(2)从散点图中发现气温与热饮销售杯数之间关系的一般规律;(3)求回归方程;(4)如果某天的气温是C,预测这天卖出的热饮杯数。解:(1)散点图温度温度热饮杯数(2)气温与热饮杯数成负相关,即气温越高,卖出去的热饮杯数越少。(3)从散点图可以看出,这些点大致分布在一条直线附近。Y=-2.352x+147.767Y=-2.352x+147.767^通过列表、计算、代入公式计算b,a的值、写出直线方程。Y=-2.352x+147.767(4)当x=2时,y=143.063,因此,这天大约可以卖出143杯热饮。目标检测1、下列两个变量之间的关系哪个不是函数关系()A.角度和它的余弦值B.正方形边长和面积C.正n边形的边数和它的内角和D.人的年龄和身高有关法律规定,香烟盒上必须印上“吸烟有害健康”的警示语.吸烟和健康之间有因果关系吗?每一个吸烟者的健康问题都是因为吸烟引起的吗?你认为“健康问题不一定是由吸烟引起的,所以可以吸烟“的说法对吗?地区的环境条件适合天鹅栖息繁衍.有人经统计发现了一个有趣的现象,如果村庄附近栖息的天鹅多,那么这个村庄的婴儿出生率也高;天鹅少的地方婴儿出生率低.于是,他就得出一个结论:天鹅能够带来孩子.你认为这个结论对吗?为什么?你能由此解释一下,社会上流行“乌鸦叫,没好兆”这样的迷信说法的原因吗?下表为某地近几年机动车辆数与交通事故数的统计资料,请判断机动车辆数与交通事故数之间是否有线性相关关系,说明理由.

车辆数95110112120129135150180

事故数6.27.57.78.58.79.810.2135、以下是某地搜集到的新房屋的销售价格和房屋的面积的数据:(1)画出数据对应的散点图;(2)求线性回归方程,并在散点图中加上回归直线;(3)据(2)的结果估计当房屋面积为时的销售价格.6.下表提供了某厂节能降耗技术改造后生产甲产品过程中记录的产量x

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论