广东省惠州市第四中学 人教版选修3-5 动量守恒定律及其应用 教案_第1页
广东省惠州市第四中学 人教版选修3-5 动量守恒定律及其应用 教案_第2页
广东省惠州市第四中学 人教版选修3-5 动量守恒定律及其应用 教案_第3页
广东省惠州市第四中学 人教版选修3-5 动量守恒定律及其应用 教案_第4页
广东省惠州市第四中学 人教版选修3-5 动量守恒定律及其应用 教案_第5页
已阅读5页,还剩4页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

9/9动量守恒定律及其应用教学目标:1.掌握动量守恒定律的内容及使用条件,知道应用动量守恒定律解决问题时应注意的问题.2.掌握应用动量守恒定律解决问题的一般步骤.3.会应用动量定恒定律分析、解决碰撞、爆炸等物体相互作用的问题.教学重点:动量守恒定律的正确应用;熟练掌握应用动量守恒定律解决有关力学问题的正确步骤.教学难点:应用动量守恒定律时守恒条件的判断,包括动量守恒定律的“五性〞:①条件性;②整体性;③矢量性;④相对性;⑤同时性.教学方法:1.学生通过阅读、比照、讨论,总结出动量守恒定律的解题步骤.2.学生通过实例分析,结合碰撞、爆炸等问题的特点,明确动量守恒定律的矢量性、同时性和相对性.3.讲练结合,计算机辅助教学教学过程一、动量守恒定律1.动量守恒定律的内容一个系统不受外力或者受外力之和为零,这个系统的总动量保持不变。即:2.动量守恒定律成立的条件⑴系统不受外力或者所受外力之和为零;⑵系统受外力,但外力远小于内力,可以忽略不计;⑶系统在某一个方向上所受的合外力为零,那么该方向上动量守恒。⑷全过程的某一阶段系统受的合外力为零,那么该阶段系统动量守恒。3.动量守恒定律的表达形式〔1〕,即p1+p2=p1/+p2/,〔2〕Δp1+Δp2=0,Δp1=-Δp2和4.动量守恒定律的重要意义从现代物理学的理论高度来认识,动量守恒定律是物理学中最根本的普适原理之一。〔另一个最根本的普适原理就是能量守恒定律。〕从科学实践的角度来看,迄今为止,人们尚未发现动量守恒定律有任何例外。相反,每当在实验中观察到似乎是违反动量守恒定律的现象时,物理学家们就会提出新的假设来补救,最后总是以有新的发现而胜利告终。例如静止的原子核发生β衰变放出电子时,按动量守恒,反冲核应该沿电子的反方向运动。但云室照片显示,两者径迹不在一条直线上。为解释这一反常现象,1930年泡利提出了中微子假说。由于中微子既不带电又几乎无质量,在实验中极难测量,直到1956年人们才首次证明了中微子的存在。〔2019年高考综合题23②就是根据这一历史事实设计的〕。又如人们发现,两个运动着的带电粒子在电磁相互作用下动量似乎也是不守恒的。这时物理学家把动量的概念推广到了电磁场,把电磁场的动量也考虑进去,总动量就又守恒了。5.应用动量守恒定律解决问题的根本思路和一般方法〔1〕分析题意,明确研究对象.在分析相互作用的物体总动量是否守恒时,通常把这些被研究的物体总称为系统.对于比拟复杂的物理过程,要采用程序法对全过程进行分段分析,要明确在哪些阶段中,哪些物体发生相互作用,从而确定所研究的系统是由哪些物体组成的。〔2〕要对各阶段所选系统内的物体进行受力分析,弄清哪些是系统内部物体之间相互作用的内力,哪些是系统外物体对系统内物体作用的外力.在受力分析的根底上根据动量守恒定律条件,判断能否应用动量守恒。〔3〕明确所研究的相互作用过程,确定过程的始、末状态,即系统内各个物体的初动量和末动量的量值或表达式。注意:在研究地面上物体间相互作用的过程时,各物体运动的速度均应取地球为参考系。〔4〕确定好正方向建立动量守恒方程求解。二、动量守恒定律的应用1.碰撞AABABAABABABv1vv1/v2/ⅠⅡⅢ仔细分析一下碰撞的全过程:设光滑水平面上,质量为m1的物体A以速度v1向质量为m2的静止物体B运动,B的左端连有轻弹簧。在Ⅰ位置A、B刚好接触,弹簧开始被压缩,A开始减速,B开始加速;到Ⅱ位置A、B速度刚好相等〔设为v〕,弹簧被压缩到最短;再往后A、B开始远离,弹簧开始恢复原长,到Ⅲ位置弹簧刚好为原长,A、B分开,这时A、B的速度分别为。全过程系统动量一定是守恒的;而机械能是否守恒就要看弹簧的弹性如何了。〔1〕弹簧是完全弹性的。Ⅰ→Ⅱ系统动能减少全部转化为弹性势能,Ⅱ状态系统动能最小而弹性势能最大;Ⅱ→Ⅲ弹性势能减少全部转化为动能;因此Ⅰ、Ⅲ状态系统动能相等。这种碰撞叫做弹性碰撞。由动量守恒和能量守恒可以证明A、B的最终速度分别为:。〔这个结论最好背下来,以后经常要用到。〕〔2〕弹簧不是完全弹性的。Ⅰ→Ⅱ系统动能减少,一局部转化为弹性势能,一局部转化为内能,Ⅱ状态系统动能仍和⑴相同,弹性势能仍最大,但比⑴小;Ⅱ→Ⅲ弹性势能减少,局部转化为动能,局部转化为内能;因为全过程系统动能有损失〔一局部动能转化为内能〕。这种碰撞叫非弹性碰撞。〔3〕弹簧完全没有弹性。Ⅰ→Ⅱ系统动能减少全部转化为内能,Ⅱ状态系统动能仍和⑴相同,但没有弹性势能;由于没有弹性,A、B不再分开,而是共同运动,不再有Ⅱ→Ⅲ过程。这种碰撞叫完全非弹性碰撞。可以证明,A、B最终的共同速度为。在完全非弹性碰撞过程中,系统的动能损失最大,为:〔这个结论最好背下来,以后经常要用到。〕【例1】质量为M的楔形物块上有圆弧轨道,静止在水平面上。质量为m的小球以速度v1向物块运动。不计一切摩擦,圆弧小于90°且足够长。求小球能上升到的最大高度H和物块的最终速度v。解析:系统水平方向动量守恒,全过程机械能也守恒。在小球上升过程中,由水平方向系统动量守恒得:由系统机械能守恒得:解得全过程系统水平动量守恒,机械能守恒,得点评:此题和上面分析的弹性碰撞根本相同,唯一的不同点仅在于重力势能代替了弹性势能。【例2】动量分别为5kgm/s和6kgm/s的小球A、B沿光滑平面上的同一条直线同向运动,A追上B并发生碰撞后。假设碰撞后A的动量减小了2kgm/s,而方向不变,那么A、B质量之比的可能范围是什么?解析:A能追上B,说明碰前vA>vB,∴;碰后A的速度不大于B的速度,;又因为碰撞过程系统动能不会增加,,由以上不等式组解得:点评:此类碰撞问题要考虑三个因素:①碰撞中系统动量守恒;②碰撞过程中系统动能不增加;③碰前、碰后两个物体的位置关系〔不穿越〕和速度大小应保证其顺序合理。2.子弹打木块类问题子弹打木块实际上是一种完全非弹性碰撞。作为一个典型,它的特点是:子弹以水平速度射向原来静止的木块,并留在木块中跟木块共同运动。下面从动量、能量和牛顿运动定律等多个角度来分析这一过程。【例3】设质量为m的子弹以初速度v0射向静止在光滑水平面上的质量为M的木块,并留在木块中不再射出,子弹钻入木块深度为d。求木块对子弹的平均阻力的大小和该过程中木块前进的距离。s2s2ds1v0v从动量的角度看,子弹射入木块过程中系统动量守恒:从能量的角度看,该过程系统损失的动能全部转化为系统的内能。设平均阻力大小为f,设子弹、木块的位移大小分别为s1、s2,如下图,显然有s1-s2=d对子弹用动能定理:……①对木块用动能定理:……②①、②相减得:……③点评:这个式子的物理意义是:fd恰好等于系统动能的损失;根据能量守恒定律,系统动能的损失应该等于系统内能的增加;可见,即两物体由于相对运动而摩擦产生的热〔机械能转化为内能〕,等于摩擦力大小与两物体相对滑动的路程的乘积〔由于摩擦力是耗散力,摩擦生热跟路径有关,所以这里应该用路程,而不是用位移〕。由上式不难求得平均阻力的大小:至于木块前进的距离s2,可以由以上②、③相比得出:从牛顿运动定律和运动学公式出发,也可以得出同样的结论。由于子弹和木块都在恒力作用下做匀变速运动,位移与平均速度成正比:一般情况下,所以s2<<d。这说明,在子弹射入木块过程中,木块的位移很小,可以忽略不计。这就为分阶段处理问题提供了依据。象这种运动物体与静止物体相互作用,动量守恒,最后共同运动的类型,全过程动能的损失量可用公式:…④当子弹速度很大时,可能射穿木块,这时末状态子弹和木块的速度大小不再相等,但穿透过程中系统动量仍然守恒,系统动能损失仍然是ΔEK=fd〔这里的d为木块的厚度〕,但由于末状态子弹和木块速度不相等,所以不能再用④式计算ΔEK的大小。做这类题目时一定要画好示意图,把各种数量关系和速度符号标在图上,以免列方程时带错数据。3.反冲问题在某些情况下,原来系统内物体具有相同的速度,发生相互作用后各局部的末速度不再相同而分开。这类问题相互作用过程中系统的动能增大,有其它能向动能转化。可以把这类问题统称为反冲。【例4】质量为m的人站在质量为M,长为L的静止小船的右端,小船的左端靠在岸边。当他向左走到船的左端时,船左端离岸多远?解析:先画出示意图。人、船系统动量守恒,总动量始终为零,所以人、船动量大小始终相等。从图中可以看出,人、船的位移大小之和等于L。设人、船位移大小分别为l1、l2,那么:mv1=Mv2,两边同乘时间t,ml1=Ml2,而l1+l2=L,点评:应该注意到:此结论与人在船上行走的速度大小无关。不管是匀速行走还是变速行走,甚至往返行走,只要人最终到达船的左端,那么结论都是相同的。做这类题目,首先要画好示意图,要特别注意两个物体相对于地面的移动方向和两个物体位移大小之间的关系。以上所列举的人、船模型的前提是系统初动量为零。如果发生相互作用前系统就具有一定的动量,那就不能再用m1v1=m2v2这种形式列方程,而要利用(m1+m2)v0=m1v1+m2v2列式。【例5】总质量为M的火箭模型从飞机上释放时的速度为v0,速度方向水平。火箭向后以相对于地面的速率u喷出质量为m的燃气后,火箭本身的速度变为多大?解析:火箭喷出燃气前后系统动量守恒。喷出燃气后火箭剩余质量变为M-m,以v0方向为正方向,4.爆炸类问题【例6】抛出的手雷在最高点时水平速度为10m/s,这时突然炸成两块,其中大块质量300g仍按原方向飞行,其速度测得为50m/s,另一小块质量为200g,求它的速度的大小和方向。分析:手雷在空中爆炸时所受合外力应是它受到的重力G=(m1+m2)g,可见系统的动量并不守恒。但在爆炸瞬间,内力远大于外力时,外力可以不计,系统的动量近似守恒。设手雷原飞行方向为正方向,那么整体初速度;m1=0.3kg的大块速度为m/s、m2=0.2kg的小块速度为,方向不清,暂设为正方向。由动量守恒定律:m/s此结果说明,质量为200克的局部以50m/s的速度向反方向运动,其中负号表示与所设正方向相反5.某一方向上的动量守恒【例7】如下图,AB为一光滑水平横杆,杆上套一质量为M的小圆环,环上系一长为L质量不计的细绳,绳的另一端拴一质量为m的小球,现将绳拉直,且与AB平行,由静止释放小球,那么当线绳与AB成θ角时,圆环移动的距离是多少?解析:虽然小球、细绳及圆环在运动过程中合外力不为零〔杆的支持力与两圆环及小球的重力之和不相等〕系统动量不守恒,但是系统在水平方向不受外力,因而水平动量守恒。设细绳与AB成θ角时小球的水平速度为v,圆环的水平速度为V,那么由水平动量守恒有:MV=mv且在任意时刻或位置V与v均满足这一关系,加之时间相同,公式中的V和v可分别用其水平位移替代,那么上式可写为:Md=m[〔L-Lcosθ〕-d]解得圆环移动的距离:d=mL〔1-cosθ〕/〔M+m〕点评:以动量守恒定律等知识为依托,考查动量守恒条件的理解与灵活运用能力学生常出现的错误:〔1〕对动量守恒条件理解不深刻,对系统水平方向动量守恒感到疑心,无法列出守恒方程.〔2〕找不出圆环与小球位移之和〔L-Lcosθ〕。6.物块与平板间的相对滑动【例8】如下图,一质量为M的平板车B放在光滑水平面上,在其右端放一质量为m的小木块A,m<M,A、B间动摩擦因数为μ,现给A和B以大小相等、方向相反的初速度v0,使A开始向左运动,B开始向右运动,最后A不会滑离B,求:〔1〕A、B最后的速度大小和方向;〔2〕从地面上看,小木块向左运动到离出发点最远处时,平板车向右运动的位移大小。解析:〔1〕由A、B系统动量守恒定律得:Mv0-mv0=〔M+m〕v ①所以v=v0方向向右〔2〕A向左运动速度减为零时,到达最远处,此时板车移动位移为s,速度为v′,那么由动量守恒定律得:Mv0-mv0=Mv′ ①对板车应用动能定理得:-μmgs=mv′2-mv02 ②联立①②解得:s=v02【例9】两块厚度相同的木块A和B,紧靠着放在光滑的水平面上,其质量分别为,,它们的下底面光滑,上外表粗糙;另有一质量的滑块C〔可视为质点〕,以的速度恰好水平地滑到A的上外表,如下图,由于摩擦,滑块最后停在木块B上,B和C的共同速度为3.0m/s,求:〔1〕木块A的最终速度;〔2〕滑块C离开A时的速度。

解析:这是一个由A、B、C三个物体组成的系统,以这系统为研究对象,当C在A、B上滑动时,A、B、C三个物体间存在相互作用,但在水平方向不存在其他外力作用,因此系统的动量守恒。〔1〕当C滑上A后,由于有摩擦力作用,将带动A和B一起运动,直至C滑上B后,A、B两木块别离,别离时木块A的速度为。最后C相对静止在B上,与B以共同速度运动,由动量守恒定律有〔2〕为计算,我们以B、C为系统,C滑上B后与A别离,C、B系统水平方向动量守恒。C离开A时的速度为,B与A的速度同为,由动量守恒定律有三、针对训练练习1

1.质量为M的小车在水平地面上以速度v0匀速向右运动。当车中的砂子从底部的漏斗中不断流下时,车子速度将〔〕A.减小B.不变C.增大D.无法确定2.某人站在静浮于水面的船上,从某时刻开始人从船头走向船尾,设水的阻力不计,那么在这段时间内人和船的运动情况是〔〕A.人匀速走动,船那么匀速后退,且两者的速度大小与它们的质量成反比B.人匀加速走动,船那么匀加速后退,且两者的速度大小一定相等C.不管人如何走动,在任意时刻两者的速度总是方向相反,大小与它们的质量成反比D.人走到船尾不再走动,船那么停下3.如下图,放在光滑水平桌面上的A、B木块中部夹一被压缩的弹簧,当弹簧被放开时,它们各自在桌面上滑行一段距离后,飞离桌面落在地上。A的落地点与桌边水平距离0.5m,B的落地点距离桌边1m,那么〔〕A.A、B离开弹簧时的速度比为1∶2B.A、B质量比为2∶1C.未离开弹簧时,A、B所受冲量比为1∶2D.未离开弹簧时,A、B加速度之比1∶24.连同炮弹在内的车停放在水平地面上。炮车和弹质量为M,炮膛中炮弹质量为m,炮车与地面同时的动摩擦因数为μ,炮筒的仰角为α。设炮弹以速度射出,那么炮车在地面上后退的距离为_________________。5.甲、乙两人在摩擦可略的冰面上以相同的速度相向滑行。甲手里拿着一只篮球,但总质量与乙相同。从某时刻起两人在行进中互相传球,当乙的速度恰好为零时,甲的速度为__________________,此时球在_______________位置。6.如下图,在沙堆外表放置一长方形木块A,其上面再放一个质量为m=0.10kg的爆竹B,木块的质量为M=6.0kg。当爆竹爆炸时,因反冲作用使木块陷入沙中深度h=50cm,而木块所受的平均阻力为f=80N。假设爆竹的火药质量以及空气阻力可忽略不计,g取,求爆竹能上升的最大高度。参考答案1.B砂子和小车组成的系统动量守恒,由动量守恒定律,在初状态,砂子落下前,砂子和车都以向前运动;在末状态,砂子落下时具有与车相同的水平速度,车的速度为v′,由得,车速不变。此题易错选C,认为总质量减小,车速增大。这种想法错在研究对象的选取,应保持初末状态研究对象是同系统,质量不变。2.A、C、D人和船组成的系统动量守恒,总动量为0,∴不管人如何走动,在任意时刻两者的动量大小相等,方向相反。假设人停止运动而船也停止运动,∴选A、C、D。B项错在两者速度大小一定相等,人和船的质量不一定相等。3.A、B、DA、B组成的系统在水平不受外力,动量守恒,从两物落地点到桌边的距离,∵两物体落地时间相等,∴与x成正比,∴,即A、B离开弹簧的速度比。由,可知,未离开弹簧时,A、B受到的弹力相同,作用时间相同,冲量I=F·t也相同,∴C错。未离开弹簧时,F相同,m不同,加速度,与质量成反比,∴。4.提示:在发炮瞬间,炮车与炮弹组成的系统在水平方向上动量守恒发炮后,炮车受地面阻力作用而做匀减速运动,利用运动学公式,,其中,5.0甲提示:甲、乙和篮球组成的系统动量守恒,根据题设条件,可知甲与篮球的初动量与乙的初动量大小相等,方向相反,∴总动量为零。由动量守恒定律得,系统末动量也为零。因乙速度恰好为零,∴甲和球一起速度为零。6.解:爆竹爆炸瞬间,木块获得的瞬时速度v可由牛顿第二定律和运动学公式求得爆竹爆炸过程中,爆竹木块系统动量守恒练习21.质量相同的两个小球在光滑水平面上沿连心线同向运动,球1的动量为7kg·m/s,球2的动量为5kg·m/s,当球1追上球2时发生碰撞,那么碰撞后两球动量变化的可能值是A.Δp1=-1kg·m/s,Δp2=1kg·m/sB.Δp1=-1kg·m/s,Δp2=4kg·m/sC.Δp1=-9kg·m/s,Δp2=9kg·m/sD.Δp1=-12kg·m/s,Δp2=10kg·m/s2.小车AB静置于光滑的水平面上,A端固定一个轻质弹簧,B端粘有橡皮泥,AB车质量为M,长为L,质量为m的木块C放在小车上,用细绳连结于小车的A端并使弹簧压缩,开始时AB与C都处于静止状态,如下图,当突然烧断细绳,弹簧被释放,使物体C离开弹簧向B端冲去,并跟B端橡皮泥粘在一起,以下说法中正确的选项是A.如果AB车内外表光滑,整个系统任何时刻机械能都守恒B.整个系统任何时刻动量都守恒C.当木块对地运动速度为v时,小车对地运动速度为vD.AB车向左运动最大位移小于L3.如下图,质量分别为m和M的铁块a和b用细线相连,在恒定的力作用下在水平桌面上以速度v匀速运动.现剪断两铁块间的连线,同时保持拉力不变,当铁块a停下的瞬间铁块b的速度大小为_______.4.质量为M的小车静止在光滑的水平面上,质量为m的小球用细绳吊在小车上O点,将小球拉至水平位置A点静止开始释放〔如下图〕,求小球落至最低点时速度多大?〔相对地的速度〕5.如下图,在光滑水平面上有两个并排放置的木块A和B,mA=0.5kg,mB=0.3kg,有一质量为mC=0.1kg的小物块C以20m/s的水平速度滑上A外表,由于C和A、B间有摩擦,C滑到B外表上时最终与B以2.5m/s的共同速度运动,求:〔1〕木块A的最后速度;〔2〕C离开A时C的速度。6.如下图甲、乙两人做抛球游戏,甲站在一辆平板车上,车与水平地面间摩擦不计.甲与车的总质量M=100kg,另有一质量m=2kg的球.乙站在车的对面的地上,身旁有假设干质量不等的球.开始车静止,甲将球以速度v〔相对地面〕水平抛给乙,乙接到抛来的球后,马上将另一质量为m′=2m的球以相同速率v水平抛回给甲,甲接住后,再以相同速率v将此球水平抛给乙,这样往复进行.乙每次抛回给甲的球的质量都等于他接到的球的质量为2倍,求:〔1〕甲第二次抛出球后,车的速度大小.〔2〕从第一次算起,甲抛出多少个球后,再不能接到乙抛回来的球.参考答案:1.A 2.BCD3.v 4.5.〔1〕vA=2m/s〔2〕vC=4m/s6.〔1〕v,向左〔2〕5个练习31.在光滑水平面上,两球沿球心连线以相等速率相向而行,并发生碰撞,以下现象可能的是〔〕A.假设两球质量相同,碰后以某一相等速率互相分开B.假设两球质量相同,碰后以某一相等速率同向而行C.假设两球质量不同,碰后以某一相等速率互相分开D.假设两球质量不同,碰后以某一相等速率同向而行2.如下图,用细线挂一质量为M的木块,有一质量为m的子弹自左向右水平射穿此木块,穿透前后子弹的速度分别为和v〔设子弹穿过木块的时间和空气阻力不计〕,木块的速度大小为〔〕A.B.C.D.3.载人气球原静止于高h的空中,气球质量为M,人的质量为m。假设人要沿绳梯着地,那么绳梯长至少是〔〕A.〔m+M〕h/MB.mh/MC.Mh/mD.h4.质量为2kg的小车以2m/s的速度沿光滑的水平面向右运动,假设将质量为2kg的砂袋以3m/s的速度迎面扔上小车,那么砂袋与小车一起运动的速度的大小和方向是〔〕A.2.6m/s,向右B.2.6m/s,向左C.0.5m/s,向左D.0.8m/s,向右5.在质量为M的小车中挂有一单摆,摆球的质量为,小车〔和单摆〕以恒定的速度V沿光滑水平地面运动,与位于正对面的质量为m的静止木块发生碰撞,碰撞的时间极短。在此碰撞过程中,以下哪个或哪些说法是可能发生的〔〕A.小车、木块、摆球的速度都发生变化,分别变为、、,满足B.摆球的速度不变,小车和木块的速度变为和,满足C.摆球的速度不变,小车和木块的速度都变为v,满足MV〔M+m〕vD.小车和摆球的速度都变为,木块的速度变为,满足6.车厢停在光滑的水平轨道上,车厢后面的人对前壁发射一颗子弹。设子弹质量为m,出口速度v,车厢和人的质量为M,那么子弹陷入前车壁后,车厢的速度为〔〕A.mv/M,向前B.mv/M,向后C.mv/〔m+M〕,向前D.07.向空中发射一物体,不计空气阻力。当此物体的速度恰好沿水平方向时,物体炸裂成a、b两块,假设质量较大的a块的速度方向仍沿原来的方向,那么〔〕A.b的速度方向一定与原速度方向相反B.从炸裂到落地的这段时间里,a飞行的水平距离一定比b的大C

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论