东北师大附中净月实验学校2022年数学八年级第一学期期末达标测试试题含解析_第1页
东北师大附中净月实验学校2022年数学八年级第一学期期末达标测试试题含解析_第2页
东北师大附中净月实验学校2022年数学八年级第一学期期末达标测试试题含解析_第3页
东北师大附中净月实验学校2022年数学八年级第一学期期末达标测试试题含解析_第4页
东北师大附中净月实验学校2022年数学八年级第一学期期末达标测试试题含解析_第5页
已阅读5页,还剩12页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年八上数学期末模拟试卷注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题(每小题3分,共30分)1.如图,OC平分∠MON,P为OC上一点,PA⊥OM,PB⊥ON,垂足分别为A、B,连接AB,得到以下结论:(1)PA=PB;(2)OA=OB;(3)OP与AB互相垂直平分;(4)OP平分∠APB,正确的个数是()A.1 B.2 C.3 D.42.若+|y+1|=0,则x+y的值为()A.-3 B.3 C.-1 D.13.ABC的内角分别为A、B、C,下列能判定ABC是直角三角形的条件是()A.A2B3C B.C2B C.A:B:C3:4:5 D.ABC4.如图①,把4个长为a,宽为b的长方形拼成如图②所示的图形,且a=3b,则根据这个图形不能得到的等式是()A.(a+b)2=4ab+(a-b)2 B.4b2+4ab=(a+b)2C.(a-b)2=16b2-4ab D.(a-b)2+12a2=(a+b)25.若x=-1.则下列分式值为0的是()A. B. C. D.6.下列哪一组数是勾股数()A.9,12,13 B.8,15,17 C.,3, D.12,18,227.正比例函数y=2kx的图像如图所示,则关于函数y=(k-2)x+1-k的说法:①y随x的增大而增大;②图像与y轴的交点在x轴上方;③图像不经过第三象限;④要使方程组有解,则k≠-2;正确的是()A.①② B.①②③ C.②③ D.②③④8.实数不能写成的形式是()A. B. C. D.9.一个多边形的内角和是720°,这个多边形是()A.五边形 B.六边形 C.七边形 D.八边形10.由下列条件不能判定为直角三角形的是()A. B.C. D.二、填空题(每小题3分,共24分)11.两个最简二根式与相加得,则______.12.现有一个长方形纸片,其中.如图所示,折叠纸片,使点落在边上的处,折痕为,当点在上移动时,折痕的端点、也随之移动.若限定、分别在、边上移动,则点在边上可移动的最大距离为_________.13.已知方程组,则x-y=_________.14.在平面直角坐标系中,一青蛙从点A(-1,0)处向右跳2个单位长度,再向上跳2个单位长度到点A′处,则点A′的坐标为________.15.如图,等腰三角形中,是的垂直平分线,交于,恰好是的平分线,则=_____16.已知一次函数,若y随x的增大而减小,则的取值范围是___.17.已知a+b=3,ab=2,则a2b+ab2=_______.18.若点关于轴的对称点是,则的值是__________.三、解答题(共66分)19.(10分)如图1,为轴负半轴上一点,为轴正半轴上一点,点坐标为,点坐标为且.(1)求两点的坐标;(2)求;(3)如图2,若点坐标为点坐标为,点为线段上一点,的延长线交线段于点,若,求出点坐标.(4)如图3,若,点在轴正半轴上任意运动,的平分线交的延长线于点,在点的运动过程中,的值是否发生变化,若不变化,求出比值;若变化请说明理由.20.(6分)某学校计划的体育节进行跳绳比赛,为此学校准备购置长、短两种跳绳若干条,若花费480元购买的长跳绳的数量是花费480元购买的短跳绳的数量的,已知每条长跳绳比每条短跳绳贵4元,求购买一条长跳绳、一条短跳绳各需多少元?21.(6分)为响应国家的号召,减少污染,某厂家生产出一种节能又环保的油电混合动力汽车,既可以用油做动力行驶,也可以用电做动力行驶.这种油电混合动力汽车从甲地行驶到乙地,若完全用油做动力行驶,费用为118元;若完全用电做动力行驶,费用为36元,已知汽车行驶中每千米用油的费用比用电的费用多1.6元.(1)求汽车行驶中每千米用电的费用和甲、乙两地之间的距离.(2)若汽车从甲地到乙地采用油电混合动力行驶,且所需费用不超过61元,则至少需要用电行驶多少千米?22.(8分)如图,CE是△ABC的外角∠ACD的平分线,交BA的延长线于点E,已知∠B=25°,∠E=30°,求∠BAC的度数.23.(8分)如图,,,.求证:.24.(8分)化简:然后选择你喜欢且符合题意的一个的值代入求值.分解因式:25.(10分)如图,点C在线段AF上,AB∥FD,AC=FD,AB=FC,CE平分∠BCD交BD于E.求证:(1)△ABC≌△FCD;(2)CE⊥BD.26.(10分)一次函数的图像经过、两点.(1)求直线AB的函数表达式;(2)与直线AB交于点C,求点C的坐标.

参考答案一、选择题(每小题3分,共30分)1、C【分析】根据角平分线上的点到角的两边距离相等可得PA=PB,再利用“HL”证明Rt△APO和Rt△BPO全等,根据全等三角形对应角相等可得,全等三角形对应边相等可得OA=OB.【详解】解:∵OP平分∠AOB,PA⊥OA,PB⊥OB,∴PA=PB,故(1)正确;在Rt△APO和Rt△BPO中,,∴Rt△APO≌Rt△BPO(HL),∴∠APO=∠BPO,OA=OB,故(2)正确,∴PO平分∠APB,故(4)正确,OP垂直平分AB,但AB不一定垂直平分OP,故(3)错误,故选:C.【点睛】本题考查了角平分线上的点到角的两边距离相等的性质,全等三角形的判定与性质,熟记性质与判定方法是解题的关键2、D【分析】先根据绝对值和算术平方根的非负性,求得x、y的值,最后求和即可.【详解】解:∵+|y+1|=0∴x-2=0,y+1=0∴x=2,y=-1∴x+y=2-1=1.故答案为D.【点睛】本题主要考查了算术平方根和绝对值的非负性,根据非负性求得x、y的值是解答本题的关键.3、D【解析】根据直角三角形的性质即可求解.【详解】若ABC又AB+C=180°∴2∠C=180°,得∠C=90°,故为直角三角形,故选D.【点睛】此题主要考查直角三角形的判定,解题的关键是熟知三角形的内角和.4、D【分析】根据题意得出大正方形边长为(a+b),面积为(a+b)2,中间小正方形的边长为(a-b),面积为(a-b)2,然后根据图形得出不同的等式,对各选项进行验证即可.【详解】图②中的大正方形边长为(a+b),面积为(a+b)2,中间小正方形的边长为(a-b),面积为(a-b)2,由题意可知,大正方形的面积=四个小长方形的面积+小正方形的面积,即=(a+b)2=4ab+(a-b)2,故A项正确;∵a=3b,∴小正方形的面积可表示为4b2,即四个小长方形的面积+小正方形的面积=大正方形的面积,可表示为4b2+4ab=(a+b)2,故B项正确;大正方形的面积可表示为16b2,即大正方形的面积-四个小长方形的面积=小正方形的面积,可表示为(a-b)2=16b2-4ab,故C项正确;只有D选项无法验证,故选:D.【点睛】本题考查了等式的性质及应用,正方形的性质及应用,根据图形得出代数式是解题关键.5、C【分析】将代入各项求值即可.【详解】A.将代入原式,,错误;B.将代入原式,无意义,错误;C.将代入原式,,正确;D.将代入原式,,错误;故答案为:C.【点睛】本题考查了分式的运算,掌握分式的性质以及运算法则是解题的关键.6、B【分析】欲判断是否为勾股数,必须根据勾股数是正整数,同时还需验证两小边的平方和是否等于最长边的平方.【详解】解:A、∵92+122≠132,∴此选项不符合题意;B、∵152+82=172,∴此选项符合题意;C、∵和不是正整数,此选项不符合题意;D、∵122+182≠222,∴此选项不符合题意;故选:B.【点睛】此题考查的是勾股数的判断,掌握勾股数的定义是解决此题的关键.7、D【分析】根据正比例函数y=2kx过二,四象限,判断出k的取值范围,然后可得k-2和1-k的取值范围,即可判断①②③,解方程组,根据分式有意义的条件即可判断④.【详解】解:由图像可得正比例函数y=2kx过二,四象限,∴2k<0,即k<0,∴k-2<0,1-k>0,∴函数y=(k-2)x+1-k过一,二,四象限,故③正确;∵k-2<0,∴函数y=(k-2)x+1-k是单调递减的,即y随x的增大而减小,故①错误;∵1-k>0,∴图像与y轴的交点在x轴上方,故②正确;解方程组,解得,∴要想让方程组的解成立,则k+2≠0,即k≠-2,故④正确;故正确的是:②③④,故选:D.【点睛】本题考查了一次函数的性质,根据图像得出k的取值范围是解题关键.8、D【分析】根据二次根式的意义和性质进行化简即可判断.【详解】A.==5,正确;B.==5,正确;C.=5,正确;D.=-=-5,错误,故选:D【点睛】此题考查了二次根式的意义和性质,掌握和是解答此题的关键.9、B【解析】利用n边形的内角和可以表示成(n﹣2)•180°,结合方程即可求出答案.解:设这个多边形的边数为n,由题意,得(n﹣2)180°=720°,解得:n=6,故这个多边形是六边形.故选B.10、C【分析】由勾股定理的逆定理,只要验证两小边的平方和等于最长边的平方或最大角是否是90°即可.【详解】A、∵∠A+∠B=∠C,∴∠C=90°,故是直角三角形,正确;B、∵∠A:∠B:∠C=1:3:2,∴∠B=×180°=90°,故是直角三角形,正确;C、∵()2+()2≠()2,故不能判定是直角三角形;D、∵(b+c)(b-c)=a2,∴b2-c2=a2,即a2+c2=b2,故是直角三角形,正确.故选C.【点睛】本题考查勾股定理的逆定理的应用.判断三角形是否为直角三角形,已知三角形三边的长,只要利用勾股定理的逆定理加以判断即可.二、填空题(每小题3分,共24分)11、1【分析】两个最简二次根式可以相加,说明它们是同类二次根式,根据合并的结果即可得出答案.【详解】由题意得,与是同类二次根式,∵与相加得,∴,,

则.

故答案为:1.【点睛】本题考查了二次根式的加减运算,判断出与是同类二次根式是解答本题的关键.12、1【解析】根据翻折的性质,可得BA′与AP的关系,根据线段的和差,可得A′C,根据勾股定理,可得A′C,根据线段的和差,可得答案.【详解】①当P与B重合时,BA′=BA=6,CA′=BC−BA′=10−6=1,②当Q与D重合时,由勾股定理,得CA′==8,CA′最远是8,CA′最近是1,点A′在BC边上可移动的最大距离为8−1=1,故答案为1.【点睛】本题考查了翻折变换,利用了翻折的性质,勾股定理,分类讨论是解题关键.13、1.【分析】用和作差即可解答.【详解】解:∵∴②-①得x-y=1.故答案为1.【点睛】本题考查了方程组的应用,掌握整体思想是解答本题的关键.14、(1,2)【解析】根据向右移动,横坐标加,纵坐标不变;向上移动,纵坐标加,横坐标不变解答点A(-1,0)向右跳2个单位长度,-1+2=1,向上2个单位,0+2=2,所以点A′的坐标为(1,2).15、36【分析】设=x,根据垂直平分线的性质得到,根据角平分线的性质得到,由得到,再根据三角形内角和列方程求出x即可.【详解】设=x,∵MN是的垂直平分线,∴,∵恰好是的平分线∴,∵∴,∵即解得x=36故答案为:36.【点睛】此题主要考查三角形角度求解,解题的关键是熟知等腰三角形、垂直平分线及角平分线的性质.16、k<1.【分析】一次函数y=kx+b,当k<0时,y随x的增大而减小.据此列不等式解答即可.【详解】解:∵一次函数y=(k-1)x+2中y随x的增大而减小,

∴k-1<0,

解得k<1,

故答案是:k<1.【点睛】本题主要考查了一次函数的增减性.一次函数y=kx+b,当k>0时,y随x的增大而增大;当k<0时,y随x的增大而减小.17、6【分析】先对a2b+ab2进行因式分解,a2b+ab2=ab(a+b),再将值代入即可求解.【详解】∵a+b=3,ab=2,∴a2b+ab2=ab(a+b)=2×3=6.故答案是:6.【点睛】考查了提公因式法分解因式,解题关键是将原式整理成已知条件的形式,即转化为两数和与两数积的形式,将a+b=3,ab=2整体代入解答.18、-3【分析】根据关于y轴对称的点,纵坐标相同,横坐标互为相反数求出m、n的值,再计算m+n的值即可.【详解】∵点关于轴的对称点是,∴m=-2,n=-1,∴m+n=-2-1=-3.故答案为-3.【点睛】本题主要考查关于坐标轴对称的点的特点.关于x轴对称的点的坐标特点:横坐标不变,纵坐标互为相反数;关于y轴对称的点的坐标特点:纵坐标不变,横坐标互为相反数.三、解答题(共66分)19、(1)C(0,-2),D(-3,-2);(2)3;(3)Q(,);(4)值不变,且为【分析】(1)根据中绝对值和算术平方根的非负性可求得a和b的值,从而得到C和D的坐标;(2)求出CD的长度,再根据三角形的面积公式列式计算即可;(3)根据可得△ABQ的面积等于△BOC的面积,求出△OBC的面积,再根据AB的长度可求得点Q的纵坐标,然后求出直线AC的表达式,代入点Q纵坐标即可求出点Q的横坐标;(4)在△AOE和△BFC中,利用三角形内角和定理列式整理表示出∠ABC,然后相比即可得解.【详解】解:(1)∵,∴a+2=0,b+3=0,∴a=-2,b=-3,∴C(0,-2),D(-3,-2);(2)∵C(0,-2),D(-3,-2),∴CD=3,且CD∥x轴,∴=×3×2=3;(3)∵,△OBP为公共部分,∴S△ABQ=S△BOC,∵B(2,0),C(0,-2)∴S△BOC==2=S△ABQ,∵A(-3,0),∴AB=5,S△ABQ==2,∴,设直线AC的表达式为y=kx+b,将A,C坐标代入,,解得:,∴直线AC的表达式为:,令y=,解得x=,∴点Q的坐标为(,);(4)在△ACE中,设∠ADC=∠DAC=α,∠ACE=β,∠E=∠DAC-∠ACE=α-β,∵CE平分∠ACB,∴∠BCE=∠ACE=β,在△AFE和△BFC中,∠E+∠EAF+∠AFE=180°,∠ABC+∠BCF+∠BFC=180°,∵CD∥x轴,∴∠EAF=∠ADC=α,又∵∠AFE=∠BFC,∴∠E+∠EAF=∠ABC+∠BCF,即α-β+α=∠ABC+β,∴∠ABC=2(α-β),∴==,为定值.【点睛】本题考查了坐标与图形的性质,三角形角平分线,三角形的面积,三角形内角和定理,待定系数法求一次函数解析式,属于综合体,熟记性质并准确识图是解题的关键.20、购买长跳绳为16元,短跳绳为12元【分析】设购买一条短跳绳x元,则购买长跳绳元,根据题意列分式方程,解方程即可.【详解】解:设购买短跳绳x元,则购买长跳绳元,依题意,有:,化简,解得:.所以,购买长跳绳为16元,短跳绳为12元.【点睛】本题考查的是分式方程的实际应用,根据题意列出分式方程,注意其中分式方程有增根的情况.21、(1)汽车行驶中每千米用电的费用是元,甲、乙两地之间的距离是121千米;(2)至少需要用电行驶81千米.【分析】(1)设汽车行驶中每千米用电的费用是元,则每千米用油的费用为元,根据题意,列出分式方程,并解方程即可;(2)先求出汽车行驶中每千米用油的费用,设汽车用电行驶,然后根据题意,列出一元一次不等式,即可求出结论.【详解】解:(1)设汽车行驶中每千米用电的费用是元,则每千米用油的费用为元,列方程得,解得,经检验是原方程的解,则甲、乙两地之间的距离是千米.答:汽车行驶中每千米用电的费用是元,甲、乙两地之间的距离是千米.(2)汽车行驶中每千米用油的费用为元.设汽车用电行驶,可得,解得,答:至少需要用电行驶81千米.【点睛】此题考查的是分式方程的应用和一元一次不等式的应用,掌握实际问题中的等量关系和不等关系是解决此题的关键.22、85°【分析】根据三角形外角性质求出∠ECD,根据角平分线定义求出∠ACE,根据三角形外角性质求出即可.【详解】解:∵∠ECD是△BCE的一个外角,∴∠ECD=∠B+∠E=55°.∵CE是∠ACD的平分线,∴∠ACE=∠ECD=55°.∵∠BAC是△CAE的一个外角,∴∠BAC=∠ACE+∠E=85°.【点睛】本题考查了三角形外角性质,角平分线定义的应用,本题的关键是掌握三角形外角性质,并能灵活运用定理进行推理23、详见

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论