版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年八上数学期末模拟试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题(每题4分,共48分)1.下列运算正确的是()A.(π-3.14)0=0 B.2a2a3=2a6C.= D.(-3x-1y3)2=6x-2y62.下列运算正确的是()A.a2·a3=a6 B.(-a2)3=-a5C.a10÷a9=a(a≠0) D.(-bc)4÷(-bc)2=-b2c23.若分式的值为零,则x的值为()A. B. C.2 D.24.若分式方程无解,则的值为()A.5 B.4 C.3 D.05.如图,在△ABC中,已知点D、E、F分别是BC、AD、CE的中点,且△ABC的面积为16,则△BEF的面积是()A.2 B.4 C.6 D.86.在下列正方体的表面展开图中,剪掉1个正方形(阴影部分),剩余5个正方形组成中心对称图形的是()A. B. C. D..7.某鞋厂为了了解初中生穿鞋的尺码情况,对某中学八年级(2)班的20名男生进行了调查,统计结果如下表:则这20个数据的中位数和众数分别为()尺码373839404142人数344711A.4和7 B.40和7 C.39和40 D.39.1和398.一个多边形截去一个角后,形成另一个多边形的内角和为,那么原多边形的边数为()A.5 B.5或6 C.6或7或8 D.7或8或99.过元旦了,全班同学每人互发一条祝福短信,共发了380条,设全班有x名同学,列方程为()A. B.x(x﹣1)=380C.2x(x﹣1)=380 D.x(x+1)=38010.下面四个图形中,线段BD是△ABC的高的是()A. B.C. D.11.若实数m、n满足等式|m﹣2|+=0,且m、n恰好是等腰△ABC的两条边的边长,则△ABC的周长是()A.6 B.8 C.8或10 D.1012.将一副直角三角板如图放置,使含30°角的三角板的一条直角边和45°角的三角板的一条直角边重合,则∠1的度数为()A.45° B.60° C.75° D.85°二、填空题(每题4分,共24分)13.定义:有一组对角相等而另一组对角不相等的凸四边形叫做“等对角四边形”.已知在“等对角四边形ABCD”中,,则边BC的长是___________.14.=_________;15.因式分解:____.16.8的立方根为_______.17.正方形ABCD的边长为4,E为BC边上一点,BE=3,M为线段AE上一点,射线BM交正方形的一边于点F,且BF=AE,则BM的长为____.18.,,点在格点上,作出关于轴对称的,并写出点的坐标为________.三、解答题(共78分)19.(8分)端午节期间,甲、乙两人沿同一路线行驶,各自开车同时去离家千米的景区游玩,甲先以每小时千米的速度匀速行驶小时,再以每小时千米的速度匀速行驶,途中休息了一段时间后,仍按照每小时千米的速度匀速行驶,两人同时到达目的地,图中折线、线段分别表示甲、乙两人所走的路程、与时间之间的函数关系的图象请根据图象提供的信息,解决下列问题:(1)乙的速度为:_______;(2)图中点的坐标是________;(3)图中点的坐标是________;(4)题中_________;(5)甲在途中休息____________.20.(8分)甲、乙两人在笔直的湖边公路上同起点、同终点、同方向匀速步行2400米,先到终点的人原地休息.已知甲先出发4分钟,在整个步行过程中,甲、乙两人间的距离y(米)与甲出发的时间x(分)之间的关系如图中折线OA-AB-BC-CD所示.(1)求线段AB的表达式,并写出自变量x的取值范围;(2)求乙的步行速度;(3)求乙比甲早几分钟到达终点?21.(8分)如图,将一长方形纸片放在平面直角坐标系中,,,,动点从点出发以每秒1个单位长度的速度沿向终点运动,运动秒时,动点从点出发以相同的速度沿向终点运动,当点、其中一点到达终点时,另一点也停止运动.设点的运动时间为:(秒)(1)_________,___________(用含的代数式表示)(2)当时,将沿翻折,点恰好落在边上的点处,求点的坐标及直线的解析式;(3)在(2)的条件下,点是射线上的任意一点,过点作直线的平行线,与轴交于点,设直线的解析式为,当点与点不重合时,设的面积为,求与之间的函数关系式.22.(10分)已知一次函数与(k≠0)的图象相交于点P(1,-6).(1)求一次函数的解析式;(2)若点Q(m,n)在函数的图象上,求2n-6m+9的值.23.(10分)解方程:=-.24.(10分)如图,△ABC中,AB=13cm,BC=10cm,AD是BC的中线,且AD=12cm.(1)求AC的长;(2)求△ABC的面积.25.(12分)已知xa=3,xb=6,xc=12,xd=1.(1)求证:①a+c=2b;②a+b=d;(2)求x2a﹣b+c的值.26.如图,在中,,点、、分别在、、边上,且,.(1)求证:是等腰三角形;(2)当时,求的度数.
参考答案一、选择题(每题4分,共48分)1、C【分析】通过整式及实数的计算进行逐一判断即可得解.【详解】A.,故A选项错误;B.,故B选项错误;C.=,故C选项正确;D.,故D选项错误,故选:C.【点睛】本题主要考查了实数及整式的运算,熟练掌握相关幂运算是解决本题的关键.2、C【分析】根据同底数幂的乘法、除法、积的乘方和幂的乘方法则进行计算即可.【详解】解:A、a2•a3=a5,故A错误;B、(﹣a2)3=﹣a6,故B错误;C、a10÷a9=a(a≠0),故C正确;D、(﹣bc)4÷(﹣bc)2=b2c2,故D错误;故选:C.【点睛】本题考查了同底数幂的乘法、除法、积的乘方和幂的乘方,掌握运算法则是解题的关键.3、B【分析】直接利用分式的值为零则分子为零,分母不为零进而得出答案.【详解】解:∵分式的值为0,
∴|x|-2=0,且x-1≠0,
解得:x=.
故选:B.【点睛】本题考查分式值为零的条件,解题关键是熟练掌握分式值为零的条件.4、A【分析】解分式方程,用含a的式子表示x,根据分式方程无解,得到x-4=0,得到关于a的方程,即可求解.【详解】解:,方程两边同时乘以(x-4)得,,由于方程无解,,,,故选:.【点睛】本题考查根据分式方程解的情况求字母的取值,解题关键是熟练解分式方程.5、B【分析】根据三角形的中线把三角形分成面积相等的两部分可得S△BDE=S△ABD,S△DEC=S△ADC,S△BEF=S△BEC,然后进行等积变换解答即可.【详解】解:如图,∵E是AD的中点,∴S△BDE=S△ABD,S△DEC=S△ADC,∴S△BDE+S△DEC=S△ABD+S△ADC,即S△BEC=S△ABC=8,∵点F是CE的中点,∴S△BEF=S△BEC=4,故选B.【点睛】本题主要考查了三角形中线的性质,熟知三角形的中线把三角形分成面积相等的两部分是解题关键.6、D【解析】根据中心对称图形的概念,中心对称图形是图形沿对称中心旋转180度后与原图重合.对各选项图形分析判断后可知,选项D是中心对称图形.故选D.7、C【分析】根据众数与中位数的定义求解分析.40出现的次数最多为众数,第10、11个数的平均数为中位数.【详解】解:观察图表可知:有7人的鞋号为40,人数最多,即众数是40;中位数是第10、11人的平均数,即39;故选:C.【点睛】本题考查众数与中位数的意义.中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数);众数是数据中出现最多的一个数.8、C【分析】利用多边形内角和公式:,得出截后的是几边形,分以下三种情况进行讨论:(1)不经过顶点,(2)经过一个顶点,(3)经过2个顶点,即可得出结果.【详解】解:设截后的多边形为边形解得:(1)顶点剪,则比原来边数多1(2)过一个顶点剪,则和原来的边数相同(3)过两个顶点剪,则比原来的边数少1则原多边形的边数为6或7或8故选:C.【点睛】本题主要考查的是多边形的内角和公式,正确的掌握多边形的内角和公式以及分情况进行讨论是解题的关键.9、B【分析】设该班级共有同学x名,每个人要发(x-1)条短信,根据题意可得等量关系:人数×每个人所发的短信数量=总短信数量.【详解】设全班有x名同学,由题意得:
x(x-1)=380,
故选:B.【点睛】此题考查由实际问题抽象出一元二次方程,解题关键是正确理解题意,找出题目中的等量关系,列出方程.10、D【分析】根据三角形高的定义,过点B向AC边作垂线,点B和垂足D之间的线段是△ABC的高,逐项判断即可.【详解】∵由三角形的高线定义可知:过点B作BD⊥AC,垂足为D,则线段BD为△ABC的高;∴选项A、B、C图形中垂足不正确,都不符合题意,只有选项D符合题意.故选:D.【点睛】本题考查三角形的高线,正确理解三角形的高线是解题关键.11、D【分析】由已知等式,结合非负数的性质求m、n的值,再根据m、n分别作为等腰三角形的腰,分类求解.【详解】解:∵|m-2|+=0,∴m-2=0,n-4=0,解得m=2,n=4,当m=2作腰时,三边为2,2,4,不符合三边关系定理;当n=4作腰时,三边为2,4,4,符合三边关系定理,周长为:2+4+4=1.故选D.【点睛】本题考查了等腰三角形的性质,非负数的性质.关键是根据非负数的性质求m、n的值,再根据m或n作为腰,分类求解.12、C【分析】根据三角板可得:∠2=60°,∠5=45°,然后根据三角形内角和定理可得∠2的度数,进而得到∠4的度数,再根据三角形内角与外角的关系可得∠1的度数.【详解】解:由题意可得:∠2=60°,∠5=45°,∵∠2=60°,∴∠3=180°−90°−60°=30°,∴∠4=30°,∴∠1=∠4+∠5=30°+45°=75°,故选:C.【点睛】此题主要考查了三角形内角和定理,三角形外角的性质,关键是掌握三角形的一个外角等于和它不相邻的两个内角的和.二、填空题(每题4分,共24分)13、或【分析】根据四边形有两组对角,分别讨论每一组对角相等的情况,再解直角三角形即可求解.【详解】解:分两种情况:情况一:ADC=∠ABC=90°时,延长AD,BC相交于点E,如图所示:∵∠ABC=90°,∠DAB=60°,AB=4∴∠E=30°,AE=2AB=8,且DE=CD=,AD=AE-DE=,连接AC,在Rt△ACD中,AC=,在Rt△ABC中,∴;情况二:∠BCD=∠DAB=60°时,过点D作DM⊥AB于点M,DN⊥BC于点N,如图所示:则∠AMD=∠DNB=90°,∴四边形BNDM是矩形,∵60°,∴,∴,,∵∠DAB=60°,∠DMA=90°,且AM=AB-BM=AB-DN=4-,∴,∴,∴,∴,综上所述,或,故答案为:或.【点睛】本题借助“等对角四边形”这个新定义考查了解直角三角形及勾股定理,熟练掌握特殊角的三角函数及求值是解决本题的关键.14、-1【分析】因为b-a=-(a-b),所以可以看成是同分母的分式相加减.【详解】=【点睛】本题考查了分式的加减法,解题的关键是构建出相同的分母进行计算.15、x(x-1)【分析】提取公因式x进行因式分解.【详解】x(x-1).故答案是:x(x-1).【点睛】考查了提公因式法分解因式,熟练掌握因式分解的方法是解本题的关键.16、2.【详解】根据立方根的定义可得8的立方根为2.【点睛】本题考查了立方根.17、或【分析】分两种情况进行分析,①当BF如图位置时,②当BF为BG位置时;根据相似三角形的性质即可求得BM的长.【详解】如图,当BF如图位置时,∵AB=AB,∠BAF=∠ABE=90°,AE=BF,
∴△ABE≌△BAF(HL),
∴∠ABM=∠BAM,
∴AM=BM,AF=BE=3,
∵AB=4,BE=3,
∴AE=,
过点M作MS⊥AB,由等腰三角形的性质知,点S是AB的中点,BS=2,SM是△ABE的中位线,
∴BM=AE=×5=,
当BF为BG位置时,易得Rt△BCG≌Rt△ABE,
∴BG=AE=5,∠AEB=∠BGC,
∴△BHE∽△BCG,
∴BH:BC=BE:BG,
∴BH=.故答案是:或.【点睛】利用了全等三角形的判定和性质,等角对等边,相似三角形的判定和性质,勾股定理求解.18、(4,-3).【分析】根据题意,作出,并写出的坐标即可.【详解】解:如图,作出关于轴对称的,的坐标为(4,-3).【点睛】作关于轴对称的,关键是确定三个点的位置.三、解答题(共78分)19、(1)80千米/小时;(2)(1,60);(3)(2,160);(4);(5)1.【分析】(1)根据速度=路程时间即可得出乙的速度;(2)根据路程=速度时间,可得甲1小时所行驶的路程,即可得出A点坐标;(3)根据D的坐标可计算直线OD的解析式,从图中知E的横坐标为2,可得E的坐标;(4)根据2小时时甲追上乙,可知两人路程相等,列出方程,解方程即可;(5)根据点E到D的时间差及速度可得休息的时间.【详解】(1)乙的速度为:(千米/小时);故答案为:80千米/小时(2)∵甲先以每小时千米的速度匀速行驶小时到达A∴此时,甲走过的路程为60千米∴图中点的坐标是(1,60);故答案为:(1,60)(3)设直线OD的解析式为:,把代入得:,,∴直线OD的解析式为:,当时,,,故答案为:(4)由图像可知,两小时时,甲追上乙,由题意得:,∴,故答案为:1(5)∵,∴甲在途中休息1.故答案为:1【点睛】本题考查了一次函数的应用,读懂函数图象,理解横、纵坐标表示的含义,熟练掌握一次函数的相关知识、利用数形结合思想是解题的关键.20、(1);(2)80米/分;(3)6分钟【分析】(1)根据图示,设线段AB的表达式为:y=kx+b,把把(4,240),(16,0)代入得到关于k,b的二元一次方程组,解之,即可得到答案,
(2)根据线段OA,求出甲的速度,根据图示可知:乙在点B处追上甲,根据速度=路程÷时间,计算求值即可,
(3)根据图示,求出二者相遇时与出发点的距离,进而求出与终点的距离,结合(2)的结果,分别计算出相遇后,到达终点甲和乙所用的时间,二者的时间差即可所求答案.【详解】(1)根据题意得:
设线段AB的表达式为:y=kx+b(4≤x≤16),
把(4,240),(16,0)代入得:,
解得:,
即线段AB的表达式为:y=-20x+320(4≤x≤16),
(2)又线段OA可知:甲的速度为:=60(米/分),
乙的步行速度为:=80(米/分),
答:乙的步行速度为80米/分,
(3)在B处甲乙相遇时,与出发点的距离为:240+(16-4)×60=960(米),
与终点的距离为:2400-960=1440(米),
相遇后,到达终点甲所用的时间为:=24(分),
相遇后,到达终点乙所用的时间为:=18(分),
24-18=6(分),
答:乙比甲早6分钟到达终点.【点睛】本题考查了一次函数的应用,正确掌握分析函数图象是解题的关键.21、(1)6-t,t+;(2)D(1,3),y=x+;(3)【分析】(1)根据点E,F的运动轨迹和速度,即可得到答案;(2)由题意得:DF=OF=,DE=OE=5,过点E作EG⊥BC于点G,根据勾股定理得DG=4,进而得D(1,3),根据待定系数法,即可得到答案;(3)根据题意得直线直线的解析式为:,从而得M(,3),分2种情况:①当点M在线段DB上时,②当点M在DB的延长线上时,分别求出与之间的函数关系式,即可.【详解】∵,,,∴OA=6,OC=3,∵AE=t×1=t,∴6-t,(t+)×1=t+,故答案是:6-t,t+;(2)当时,6-t=5,t+=,∵将沿翻折,点恰好落在边上的点处,∴DF=OF=,DE=OE=5,过点E作EG⊥BC于点G,则EG=OC=3,CG=OE=5,∴DG=,∴CD=CG-DG=5-4=1,∴D(1,3),设直线的解析式为:y=kx+b,把D(1,3),E(5,0)代入y=kx+b,得,解得:,∴直线的解析式为:y=x+;(3)∵MN∥DE,∴直线直线的解析式为:,令y=3,代入,解得:x=,∴M(,3).①当点M在线段DB上时,BM=6-()=,∴=,②当点M在DB的延长线上时,BM=-6=,∴=,综上所述:.【点睛】本题主要考查一次函数与几何图形的综合,掌握勾股定理与一次函数的待定系数法,是解题的关键.22、(1)y=3x-9;(2)-9【分析】(1)利用待定系数法即可解决问题;(2)Q点(m,n)代入y=2x-6可得n=2m-6,推出2n-4m=-12,利用整体代入的思想即可解决问题;【详解】解:(1)由题意得,把P(1,-6)代入,解得,k=3,把P(1,-6)代入得,k+b=-6由k=3,解得b=-9,∴一次函数的解析式为y=3x-9;(2)∵点Q(m,n)在函数的图象上,y=3x-9,∴n=3m-9,即n-3m=-9,∴2n-6m+9=2(n-3m)+9=2×(-9)+9=-9,即2n-6m+9的值为-9.【点睛】本题考查了两直线相交的问题,(1)把交点坐标代入两个函数解析式计算即可,比较简单,(2)把点的坐标代入直线解析式正好得到n-3m的形式是解题的关键.23、【分析】先确定最简公分母是,将方程两边同时乘以最简公分母约去分母可得:,然后解一元一次方程,最后再代入最简公分母进行检验.【详解】去分母得:,解得:,经检验是分式方程的解.【点睛】本题主要考查解分式方程的方法,解决本题的关键是要熟练掌握解分式方程的方法和步骤.24、(1)AC=13cm;(1)2cm1.【分析】(1)根据已知及勾股定理的逆定理可得△ABD,△ADC是直角三角形,从而不难求得AC的长.(1)先根据三线合一可知:AD是高,由三角形面积公式即可得到结论.【详解】(1)∵D是BC的中点,BC=10cm,∴DC=BD=5cm.∵BD1+AD1=144+15=169,AB1=169,∴BD1+AD1=AB1,∴△AB
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024版福州市银行柜员劳动合同
- 天然气市场交易形式与市场机制考核试卷
- 仪器仪表制造业的品牌形象传播考核试卷
- 水产品质量安全与社会责任管理体系考核试卷
- 挂车转让合同范本
- 水产品产业升级与转型创新考核试卷
- 2024年度企业租赁办公室合同2篇
- 合同转让方协议完整版
- 水溶性淀粉的生产工艺研究考核试卷
- 贴牌生产协议合同3篇
- GB/T 18852-2020无损检测超声检测测量接触探头声束特性的参考试块和方法
- 饲料厂三级安全教育培训试卷试题(生产操作工)
- 大坝坝基开挖与支护施工方案清楚明了
- 中医师承考试试卷
- 正规的公司报案材料范文共8篇
- 信息管理中心科员安全职责考核表
- 合理安排时间 教案 综合实践活动七年级上册 教科版
- DB32T 3916-2020 建筑地基基础检测规程
- 《装配式混凝土结构建筑》考试复习题库(含答案)
- 宇宙的奥秘课件
- 中国华电集团公司组织结构
评论
0/150
提交评论