




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年八上数学期末模拟试卷请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题(每小题3分,共30分)1.在△ABC和△A′B′C′中,AB=A′B′,∠A=∠A′,若证△ABC≌△A′B′C′还要从下列条件中补选一个,错误的选法是()A.∠B=∠B′ B.∠C=∠C′ C.BC=B′C′ D.AC=A′C′2.已知如图,平分,于点,点是射线上的一个动点,若,,则的最小值是()A.2 B.3 C.4 D.不能确定3.如图,在Rt△ABO中,∠OBA=90°,A(8,8),点C在边AB上,且,点D为OB的中点,点P为边OA上的动点,当点P在OA上移动时,使四边形PDBC周长最小的点P的坐标为()A.(2,2) B. C. D.4.下列命题中,假命题是()A.对顶角相等B.平行于同一直线的两条直线互相平行C.若,则D.三角形的一个外角大于任何一个和它不相邻的内角5.等腰三角形的两边长分别为4cm和8cm,则它的周长为()A.16cm B.17cm C.20cm D.16cm或20cm6.如图,在平面直角坐标系中,以为圆心,适当长为半径画弧,交轴于点,交轴于点,再分别一点为圆心,大于的长为半径画弧,两弧在第二象限交于点.若点的坐标为,则的值为()A. B. C. D.7.如图,圆柱的底面周长为24厘米,高AB为5厘米,BC是底面直径,一只蚂蚁从点A出发沿着圆柱体的侧面爬行到点C的最短路程是()A.6厘米 B.12厘米 C.13厘米 D.16厘米8.下列说法中正确的是()A.带根号的数都是无理数 B.不带根号的数一定是有理数C.无限小数都是无理数 D.无理数一定是无限不循环小数9.下面是一名学生所做的4道练习题:①;②;③,④,他做对的个数是()A.1 B.2 C.3 D.410.点A(3,3﹣π)所在的象限是()A.第一象限 B.第二象限 C.第三象限 D.第四象限二、填空题(每小题3分,共24分)11.比较大小:_________12.在平面直角坐标系中,把直线y=-2x+3沿y轴向上平移3个单位长度后,得到的直线函数关系式为__________.13.如图,在Rt△ABC中,∠ACB=90°,∠B=30°,CD是斜边AB上的高,AD=3,则线段BD的长为___.14.在等腰三角形中,有一个角等于40°,则这个等腰三角形的顶角的外角的度数为___15.若点M(m,﹣1)关于x轴的对称点是N(2,n),则m+n的值是_____.16.若a+b=3,则代数式(-a)÷=_____________.17.用12根火柴棒(等长)拼成一个三角形,火柴棒不允许剩余、重叠和折断,则能摆出不同的三角形的个数是_______个.18.如图,把的一角折叠,若,则的度数为______.三、解答题(共66分)19.(10分)如图,在△ABC中,AC⊥BC,AD平分∠BAC,DE⊥AB于点E,求证:直线AD是CE的垂直平分线.20.(6分)已知点和关于轴对称且均不在轴上,试求的值.21.(6分)已知,直线AB∥CD.(1)如图1,若点E是AB、CD之间的一点,连接BE.DE得到∠BED.求证:∠BED=∠B+∠D.(1)若直线MN分别与AB、CD交于点E.F.①如图1,∠BEF和∠EFD的平分线交于点G.猜想∠G的度数,并证明你的猜想;②如图3,EG1和EG1为∠BEF内满足∠1=∠1的两条线,分别与∠EFD的平分线交于点G1和G1.求证:∠FG1E+∠G1=180°.22.(8分)先化简式子,然后请选取一个你最喜欢的x值代入求出这个式子的值23.(8分)如图,平面直角坐标系中,直线AB:交y轴于点A(0,1),交x轴于点B.直线x=1交AB于点D,交x轴于点E,P是直线x=1上一动点,且在点D的上方,设P(1,n).(1)求直线AB的解析式和点B的坐标;(2)求△ABP的面积(用含n的代数式表示);(3)当S△ABP=2时,以PB为边在第一象限作等腰直角三角形BPC,求出点C的坐标.24.(8分)某班级组织学生参加研学活动,计划租用一辆客车,租金为1000元,乘车费用进行均摊.出发前部分学生因有事不能参加,实际参加的人数是原计划的,结果每名学生比原计划多付5元车费,实际有多少名学生参加了研学活动?25.(10分)某校八年级甲、乙两班各有学生50人,为了了解这两个班学生身体素质情况,进行了抽样调查过程如下,请补充完整,收集数据:从甲、乙两个班各随机抽取10名学生进行身体素质测试测试成绩(百分制)如下:甲班:65,75,75,80,60,50,75,90,85,65乙班:90,55,80,70,55,70,95,80,65,70(1)整理描述数据:按如下分数段整理、描述这两组样本数据:成绩x人数班级50≤x<6060≤x<7070≤x<8080≤x<9090≤x<100甲班13321乙班21m2n在表中:m=________;n=________.(2)分析数据:①两组样本数据的平均数、中位数、众数如表所示:班级平均数中位数众数甲班75x75乙班7270y在表中:x=________,y=________.②若规定测试成绩在80分(含80分)以上的学生身体素质为优秀请估计乙班50名学生中身体素质为优秀的学生有________
人.26.(10分)如图,在平面直角坐标系中,点的坐标是,动点从原点O出发,沿着轴正方向移动,以为斜边在第一象限内作等腰直角三角形,设动点的坐标为.(1)当时,点的坐标是;当时,点的坐标是;(2)求出点的坐标(用含的代数式表示);(3)已知点的坐标为,连接、,过点作轴于点,求当为何值时,当与全等.
参考答案一、选择题(每小题3分,共30分)1、C【解析】试题分析:由题意知这两个三角形已经具备一边和一角对应相等,那就可以选择SAS,AAS,ASA,由此可知A是,ASA,B是AAS,D是SAS,它们均正确,只有D不正确.故选C考点:三角形全等的判定定理2、A【分析】根据题意点Q是射线OM上的一个动点,要求PQ的最小值,需要找出满足题意的点Q,根据直线外一点与直线上各点连接的所有线段中,垂线段最短,所以我们过点P作PQ垂直OM,此时的PQ最短,然后根据角平分线上的点到角两边的距离相等可得PA=PQ,利用已知的PA的值即可求出PQ的最小值.【详解】解:过点P作PQ⊥OM,垂足为Q,则PQ为最短距离,
∵OP平分∠MON,PA⊥ON,PQ⊥OM,
∴PA=PQ,
∵∠AOP=∠MON=30°,
∴PA=2,
∴PQ=2.
故选:A.【点睛】此题主要考查了角平分线的性质,本题的关键是要根据直线外一点与直线上各点连接的所有线段中,垂线段最短,找出满足题意的点Q的位置是解题的关键.3、D【分析】根据已知条件得到AB=OB=8,∠AOB=45°,求得BC=6,OD=BD=4,得到D(4,0),C(8,6),作D关于直线OA的对称点E,连接EC交OA于P,则此时,四边形PDBC周长最小,E(0,4),求得直线EC的解析式为y=x+4,解方程组即可得到结论.【详解】解:∵在Rt△ABO中,∠OBA=90°,A(8,8),∴AB=OB=8,∠AOB=45°,∵,点D为OB的中点,∴BC=6,OD=BD=4,∴D(4,0),C(8,6),作D关于直线OA的对称点E,连接EC交OA于P,则此时,四边形PDBC周长最小,E(0,4),∵直线OA的解析式为y=x,设直线EC的解析式为y=kx+b,∴,解得:,∴直线EC的解析式为y=x+4,解得,,∴P(,),故选:D.【点睛】本题考查了轴对称-最短路线问题,等腰直角三角形的性质,正确的找到P点的位置是解题的关键.4、C【分析】分析是否为真命题,需要分别分析各题设是否能推出结论,从而利用排除法得出答案.【详解】A,真命题,符合对顶角的性质;B,真命题,平行线具有传递性;C,假命题,若≥0,则;D,真命题,三角形的一个外角大于任何一个和它不相邻的内角;故选:C.【点睛】考查学生对命题的定义的理解及运用,要求学生对常用的基础知识牢固掌握.5、C【解析】试题分析:分当腰长为4cm或是腰长为8cm两种情况:①当腰长是4cm时,则三角形的三边是4cm,4cm,8cm,4cm+4cm=8cm不满足三角形的三边关系;当腰长是8cm时,三角形的三边是8cm,8cm,4cm,三角形的周长是20cm.故答案选C.考点:等腰三角形的性质;三角形三边关系.6、D【分析】根据作图过程可得P在第二象限角平分线上,有角平分线的性质:角的平分线上的点到角的两边的距离相等可得,再根据P点所在象限可得横纵坐标的和为0,进而得到a的数量关系.【详解】根据作图方法可得点P在第二象限角平分线上,则P点横纵坐标的和为0,故=0,解得:a=.故答案选:D.【点睛】本题考查的知识点是作图—基本作图,坐标与图形性质,角平分线的性质,解题的关键是熟练的掌握作图—基本作图,坐标与图形性质,角平分线的性质作图—基本作图,坐标与图形性质,角平分线的性质.7、C【分析】根据题意,可以将圆柱体沿BC切开,然后展开,易得到矩形ABCD,根据两点之间线段最短,再根据勾股定理即可求得答案.【详解】解:∵圆柱体的周长为24cm∴展开AD的长为周长的一半:AD=12(cm)∵两点之间线段最短,AC即为所求∴根据勾股定理AC===13(cm)故选C.
【点睛】本题主要考查了几何体的展开图以及勾股定理,能够空间想象出展开图是矩形,结合勾股定理准确的运算是解决本题的关键.8、D【分析】根据无理数的定义判断各选项即可.【详解】A中,例如,是有理数,错误;B中,例如π,是无理数,错误;C中,无限循环小数是有理数,错误;D正确,无限不循环的小数是无理数故选:D【点睛】本题考查无理数的定义,注意含有π和根号开不尽的数通常为无理数.9、B【分析】根据零次幂、积的乘方、完全平方公式、负整数指数幂进行判断.【详解】解:①,正确;②,错误;③,错误;④,正确.故选B.【点睛】本题考查了整式乘法和幂的运算,正确掌握运算法则是解题关键.10、D【解析】由点A中,,可得A点在第四象限【详解】解:∵3>0,3﹣π<0,∴点A(3,3﹣π)所在的象限是第四象限,【点睛】本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(﹣,+);第三象限(﹣,﹣);第四象限(+,﹣).二、填空题(每小题3分,共24分)11、<【分析】将两数平方后比较大小,可得答案.【详解】∵,,18<20∴<故填:<.【点睛】本题考查比较无理数的大小,无理数的比较常用平方法.12、y=-2x+1【分析】根据平移法则上加下减可得出平移后的解析式.【详解】解:由题意得:平移后的解析式为:y=-2x+3+3=-2x+1.
故答案为:y=-2x+1.【点睛】本题考查了一次函数图形的平移变换和函数解析式之间的关系,掌握一次函数的规律:左加右减,上加下减是解决此题的关键.13、9【分析】利用三角形的内角和求出∠A,余角的定义求出∠ACD,然后利用含30度角的直角三角形性质求出AC=2AD,AB=2AC即可..【详解】解:∵CD⊥AB,∠ACB=90°,∴∠ADC=∠ACB=90°又∵在三角形ABC中,∠B=30°∴∠A=90°-∠B=60°,AB=2AC又∵∠ADC=90°∴∠ACD=90°-∠A=30°∴AD=AC,即AC=6∴AB=2AC=12∴BD=AB-AD=12-3=9【点睛】本题主要考查了含30度角的直角三角形性质以及三角形内角和定理,解题的关键在于灵活应用含30度角的直角三角形性质.14、140°或80°【分析】分别讨论40°为顶角和底角的情况,求出即可.【详解】①当40°为顶角时,则这个等腰三角形的顶角的外角的度数为180-40=140°,②当40°为底角时,顶角为=100°,则这个等腰三角形的顶角的外角的度数为180-100=80°,故答案为140°或80°.【点睛】本题是对等腰三角形角度转换的考查,分类讨论是解决本题的关键.15、1【分析】直接利用关于x轴对称点的性质,横坐标相同,纵坐标互为相反数,即可得出答案.【详解】∵点M(m,﹣1)关于x轴的对称点是N(2,n),∴m=2,n=1,∴m+n=1.故答案为:1.【点睛】本题考查了关于x轴对称点的性质,正确记忆横纵坐标的关系是解题的关键.16、-3【分析】按照分式的运算法则进行运算化简,然后再把a+b=3代入即可求值.【详解】解:原式,又,∴原式=,故答案为.【点睛】本题考查了分式的加减乘除运算法则及化简求值,熟练掌握分式的运算法则是解决本题的关键.17、3【详解】设摆出的三角形的的三边有两边是x根,y根,则第三边是12-x-y根,根据三角形的三边关系定理得出:所以又因为x,y是整数,所以同时满足以上三式的x,y的值的是;2,5;3,4;3,5;4,4;4,5;5,5.则第三边对应的值是5,5,4,4,3,2;因而三边的值可能是:2,5,5或者3,4,5或者4,4,4共有三种情况,则能摆出的不同三角形的个数是3【点睛】本题属于对三角形三边关系的基本性质和大小的考查,需要考生对三角形三边关系熟练运用18、65°【分析】根据折叠的性质得到∠3=∠5,∠4=∠6,利用平角的定义有∠3+∠5+∠1+∠2+∠4+∠6=360°,则2∠3+2∠4+∠1+∠2=360°,而∠1+∠2=130°,可计算出∠3+∠4=115°,然后根据三角形内角和定理即可得到∠A的度数.【详解】如图,∵△ABC的一角折叠,∴∠3=∠5,∠4=∠6,而∠3+∠5+∠1+∠2+∠4+∠6=360°,∴2∠3+2∠4+∠1+∠2=360°.∵∠1+∠2=130°,∴∠3+∠4=115°,∴∠A=180°﹣∠3﹣∠4=65°.故答案为65°.【点睛】本题考查了三角形的内角和定理:三角形的内角和为180°.也考查了折叠的性质.作出辅助线,把图形补充完整是解题的关键.三、解答题(共66分)19、见解析.【分析】由于DE⊥AB,易得∠AED=90°=∠ACB,而AD平分∠BAC,易知∠DAE=∠DAC,又因为AD=AD,利用AAS可证△AED≌△ACD,那么AE=AC,而AD平分∠BAC,利用等腰三角形三线合一定理可知AD⊥CE,即得证.【详解】解:证明:∵DE⊥AB,
∴∠AED=90°=∠ACB,
又∵AD平分∠BAC,
∴∠DAE=∠DAC,
∵AD=AD,
∴△AED≌△ACD,
∴AE=AC,
∵AD平分∠BAC,
∴AD⊥CE,
即直线AD是线段CE的垂直平分线.【点睛】本题考查了线段垂直平分的定义、全等三角形的判定和性质、等腰三角形三线合一定理,解题的关键是证明AE=AC.20、3【分析】由题意根据关于y轴的对称点的坐标特点即横坐标互为相反数,纵坐标不变进行分析计算即可.【详解】解:∵点和点关于轴对称,且均不在轴上,则.【点睛】本题主要考查关于y轴的对称点的坐标特点,解题的关键是掌握点的坐标的变化趋势.21、(1)证明见解析;(1)①∠EGF=90°,证明见解析;②证明见解析.【分析】(1)过点E作EF∥AB,则有∠BEF=∠B根据平行线的性质即可得到结论;
(1)①由(1)中的结论得∠EGF=∠BEG+∠GFD,根据EG、FG分别平分∠BEF和∠EFD,得到∠BEF=1∠BEG,∠EFD=1∠GFD,由于BE∥CF到∠BEF+∠EFD=180°,于是得到1∠BEG+1∠GFD=180°,即可得到结论;
②过点G1作G1H∥AB,由结论可得∠G1=∠1+∠3,由平行线的性质得到∠3=∠G1FD,由于FG1平分∠EFD,求得∠EFG1=∠G1FD=∠3,由于∠1=∠1,于是得到∠G1=∠1+∠EFG1,由三角形外角的性质得到∠EG1G1=∠1+∠EFG1=∠G1,然后根据平角的性质即可得到结论.【详解】(1)证明:如图1过点E作EF∥AB,则有∠BEF=∠B.∵AB∥CD,∴EF∥CD.∴∠FED=∠D.∴∠BEF+∠FED=∠B+∠D.即∠BED=∠B+∠D;(1)①如图1所示,猜想:∠EGF=90°.证明:由(1)中的结论得∠EGF=∠BEG+∠GFD,∵EG.FG分别平分∠BEF和∠EFD,∴∠BEF=1∠BEG,∠EFD=1∠GFD,∵BE∥CF,∴∠BEF+∠EFD=180°,∴1∠BEG+1∠GFD=180°,∴∠BEG+∠GFD=90°,∵∠EGF=∠BEG+∠GFD,∴∠EGF=90°;②证明:如图3,过点G1作G1H∥AB∵AB∥CD∴G1H∥CD∴∠3=∠G1FD由(1)结论可得∠G1=∠1+∠3∵FG1平分∠EFD∴∠EFG1=∠G1FD=∠3∵∠1=∠1∴∠G1=∠1+∠EFG1∵∠EG1G1=∠1+∠EFG1∴∠G1=∠EG1G1∵∠FG1E+∠EG1G1=180°∴∠FG1E+∠G1=180°.【点睛】本题考查平行线的性质,角平分线的性质,三角形外角的性质,熟练掌握平行线的性质定理是解题的关键.22、;x=2时,原式=-1.【分析】先把括号内的分式通分,按照分式减法的运算法则计算,再根据分式除法的运算法则化简,得出最简结果,根据分式有意义的条件选取x的值,代入求值即可.【详解】原式====∵有意义,∴x≠1,x≠0,∴x可以取0和1之外的任何数,当x=2时,原式=,【点睛】本题考查分式的运算——化简求值,熟练掌握分式的混合原式法则是解题关键,注意分式有意义,分母不为0,这一隐含条件.23、(1)AB的解析式是y=-x+1.点B(3,0).(2)n-1;(3)(3,4)或(5,2)或(3,2).【解析】试题分析:(1)把A的坐标代入直线AB的解析式,即可求得b的值,然后在解析式中,令y=0,求得x的值,即可求得B的坐标;(2)过点A作AM⊥PD,垂足为M,求得AM的长,即可求得△BPD和△PAB的面积,二者的和即可求得;(3)当S△ABP=2时,n-1=2,解得n=2,则∠OBP=45°,然后分A、B、P分别是直角顶点求解.试题解析:(1)∵y=-x+b经过A(0,1),∴b=1,∴直线AB的解析式是y=-x+1.当y=0时,0=-x+1,解得x=3,∴点B(3,0).(2)过点A作AM⊥PD,垂足为M,则有AM=1,∵x=1时,y=-x+1=,P在点D的上方,∴PD=n-,S△APD=PD•AM=×1×(n-)=n-由点B(3,0),可知点B到直线x=1的距离为2,即△BDP的边PD上的高长为2,∴S△BPD=PD×2=n-,∴S△PAB=S△APD+S△BPD=n-+n-=n-1;(3)当S△ABP=2时,n-1=2,解得n=2,∴点P(1,2).∵E(1,0),∴PE=BE=2,∴∠EPB=∠EBP=45°.第1种情况,如图1,∠CPB=90°,BP=PC,过点C作CN⊥直线x=1于点N.∵∠CPB=90°,∠EPB=45°,∴∠NPC=∠EPB=45°.又∵∠CNP=∠PEB=90°,BP=PC,∴△CNP≌△BEP,∴PN=NC=EB=PE=2,∴NE=NP+PE=2+2=4,∴C(3,4).第2种情况,如图2∠PBC=90°,BP=BC,过点C作CF⊥x轴于点F.∵∠PBC=90°,∠EBP=45°,∴∠CBF=∠PBE=45°.又∵∠CFB=∠PEB=90°,BC=BP,∴△CBF≌△PBE.∴BF=CF=PE=EB=2,∴OF=OB+BF=3+2=5,∴C(5,2).第3种情况,如图3,∠PCB=90°,CP=EB,∴∠CPB=∠EBP=45°,在△PCB和△PEB中,∴△PCB≌△PEB(SAS),∴PC=CB=PE=EB=2,∴C(3,2).∴以PB为边在第一象限作等腰直角三角形BPC,点C的坐标是(3,4)或(5,2)或(3,2).考点:一次函数综合题.24、实际有40名学生参加了研学活动【分析】设计划有名学生参加研学活动,根据题意列出分式方程即可求解.【详解】解:设计划有名学生参加研学活动,由题意得.解得,.经检验,是原方程的解.所以,.答:实际有40名学生参加了研学活动.【点睛】此题主要考查分式方程的应用,解题的关键是根据题意找到等量关系列出分式方程.25、(1)1;2;(2)①75;70;②20【分析】(1)由收集的数据即可得;
(2)①根据众数和中位数的定义求解可得;
②用总人数乘以乙班样本中优秀人数所占比例可得.【详解】解:(1)由收集的数据得知:m=1,n=2故答案为:1.220(2)①甲班成绩为:50、60、65、65、75、75、75、80
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 地下小房转让合同协议
- 垃圾货运合同协议
- 地砖工程维修合同协议
- 工程审计合同补充协议
- 工程居间三方合同协议
- 大气技术服务合同协议
- 大小车包车服务合同协议
- 工程合作协议和居间合同
- 城镇自建房购房合同协议
- 国外雇佣劳务合同协议
- 【年产20万吨丙烯酸工艺设计13000字(论文)】
- 分布式光伏经济评价规范
- 轨道交通噪声与振动控制技术研究
- 乾坤未定吾皆黑马+高考冲刺百日誓师主题班会
- 如何通过饮食调理改善肠道功能
- 安徽省合肥市2024届高三第一次教学质量检查数学试卷及答案
- 2024年四川成都地铁运营有限公司招聘笔试参考题库含答案解析
- 广东省地质灾害危险性评估实施细则(2023年修订版)
- 《非税收入征收管理》课件
- 与小三分手的协议书
- 羊水过少护理查房
评论
0/150
提交评论