2023届湖北省黄冈黄梅县联考九年级数学第一学期期末学业质量监测模拟试题含解析_第1页
2023届湖北省黄冈黄梅县联考九年级数学第一学期期末学业质量监测模拟试题含解析_第2页
2023届湖北省黄冈黄梅县联考九年级数学第一学期期末学业质量监测模拟试题含解析_第3页
2023届湖北省黄冈黄梅县联考九年级数学第一学期期末学业质量监测模拟试题含解析_第4页
2023届湖北省黄冈黄梅县联考九年级数学第一学期期末学业质量监测模拟试题含解析_第5页
已阅读5页,还剩16页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年九上数学期末模拟试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每小题3分,共30分)1.抛物线经过平移得到抛物线,平移过程正确的是()A.先向下平移个单位,再向左平移个单位B.先向上平移个单位,再向右平移个单位C.先向下平移个单位,再向右平移个单位D.先向上平移个单位,再向左平移个单位.2.已知二次函数(为常数),当时,函数值的最小值为,则的值为()A. B. C. D.3.设a、b是一元二次方程x2﹣2x﹣1=0的两个根,则a2+a+3b的值为()A.5 B.6 C.7 D.84.若一个圆锥的侧面积是底面积的2倍,则圆锥侧面展开图的扇形的圆心角为()A.120° B.180° C.240° D.300°5.的相反数是()A. B. C. D.36.如图,点C是线段AB的黄金分割点(AC>BC),下列结论错误的是()A. B. C. D.7.如图,已知.按照以下步骤作图:①以点为圆心,以适当的长为半径作弧,分别交的两边于,两点,连接.②分别以点,为圆心,以大于线段的长为半径作弧,两弧在内交于点,连接,.③连接交于点.下列结论中错误的是()A. B.C. D.8.已知点、B(-1,y2)、C(3,y3)都在反比例函数的图象上,则y1、y2、y3的大小关系是()A.y1<y2<y3 B.y3<y2<y1 C.y3<y1<y2 D.y2<y1<y39.下面哪个图形不是正方体的平面展开图()A. B.C. D.10.下列四个几何体中,主视图为圆的是()A. B. C. D.二、填空题(每小题3分,共24分)11.如图,AB是半圆O的直径,AB=10,过点A的直线交半圆于点C,且sin∠CAB=,连结BC,点D为BC的中点.已知点E在射线AC上,△CDE与△ACB相似,则线段AE的长为________;12.将抛物线向上平移3个单位长度,再向右平移2个单位长度,所得到的抛物线解析式为______.13.如图,在Rt△ABC中,∠ACB=90°,AC=5cm,BC=12cm,将△ABC绕点B顺时针旋转60°,得到△BDE,连接DC交AB于点F,则△ACF与△BDF的周长之和为_______cm.14.在如图所示的几何体中,其三视图中有三角形的是______(填序号).15.从实数中,任取两个数,正好都是无理数的概率为________.16.如图,在平面直角坐标系中,已知A(1,0),D(3,0),△ABC与△DEF位似,原点O是位似中心,若AB=2,则DE=______.17.如图所示,某建筑物有一抛物线形的大门,小明想知道这道门的高度,他先测出门的宽度,然后用一根长为的小竹竿竖直的接触地面和门的内壁,并测得,则门高为__________.18.如图,在一个正方形围栏中均为地散步着许多米粒,正方形内有一个圆(正方形的内切圆)一只小鸡在围栏内啄食,则小鸡正在圆内区域啄食的概率为________.三、解答题(共66分)19.(10分)某商场要经营一种新上市的文具,进价为20元,试营销阶段发现:当销售单价是25元时,每天的销售量为250件,销售单价每上涨1元,每天的销售量就减少10件(1)写出商场销售这种文具,每天所得的销售利润(元)与销售单价(元)之间的函数关系式;(2)求销售单价为多少元时,该文具每天的销售利润最大;(3)商场的营销部结合上述情况,提出了A、B两种营销方案方案A:该文具的销售单价高于进价且不超过30元;方案B:每天销售量不少于10件,且每件文具的利润至少为25元请比较哪种方案的最大利润更高,并说明理由20.(6分)如图,△ABC是等边三角形,点D,E分别在BC,AC上,且BD=CE,AD与BE相交于点F,(1)证明:△ABD≌△BCE;(2)证明:△ABE∽△FAE;(3)若AF=7,DF=1,求BD的长.21.(6分)如图,在平面直角坐标系中,抛物线y=ax2+bx+c的顶点坐标为(2,9),与y轴交于点A(0,5),与x轴交于点E、B.(1)求二次函数y=ax2+bx+c的表达式;(2)过点A作AC平行于x轴,交抛物线于点C,点P为抛物线上的一点(点P在AC上方),作PD平行于y轴交AB于点D,问当点P在何位置时,四边形APCD的面积最大?并求出最大面积;(3)若点M在抛物线上,点N在其对称轴上,使得以A、E、N、M为顶点的四边形是平行四边形,且AE为其一边,求点M、N的坐标.22.(8分)如图,点E、F在BC上,BE=CF,AB=DC,∠B=∠C.求证:∠A=∠D.23.(8分)如图,中,弦与相交于点,,连接.求证:.24.(8分)如图1,在△ABC中,AB=BC=20,cosA=,点D为AC边上的动点(点D不与点A,C重合),以D为顶点作∠BDF=∠A,射线DE交BC边于点E,过点B作BF⊥BD交射线DE于点F,连接CF.(1)求证:△ABD∽△CDE;(2)当DE∥AB时(如图2),求AD的长;(3)点D在AC边上运动的过程中,若DF=CF,则CD=.25.(10分)如图,一次函数y=kx+b与反比例函数y=的图象相交于A(2,4)、B(-4,n)两点.(1)分别求出一次函数与反比例函数的表达式;(2)根据所给条件,请直接写出不等式kx+b>的解集;(3)过点B作BC⊥x轴,垂足为点C,连接AC,求S△ABC.26.(10分)今年我县为了创建省级文明县城,全面推行中小学校“社会主义核心价值观”进课堂.某校对全校学生进行了检测评价,检测结果分为(优秀)、(良好)、(合格)、(不合格)四个等级.并随机抽取若干名学生的检测结果作为样本进行数据处理,制作了如下所示不完整的统计表和统计图.请根据统计表和统计图提供的信息,解答下列问题:(1)本次随机抽取的样本容量为__________;(2)统计表中_________,_________.(3)若该校共有学生5000人,请你估算该校学生在本次检测中达到“(优秀)”等级的学生人数.

参考答案一、选择题(每小题3分,共30分)1、D【分析】先利用顶点式得到抛物线的顶点坐标为,抛物线的顶点坐标为,然后利用点平移的规律确定抛物线的平移情况.【详解】解:抛物线的顶点坐标为,抛物线的顶点坐标为,而点先向上平移2个单位,再向左平移3个单位后可得点,抛物线先向上平移2个单位,再向左平移3个单位后可得抛物线.故选:.【点睛】本题考查了二次函数图象与几何变换:由于抛物线平移后的形状不变,故不变,所以求平移后的抛物线解析式通常可利用两种方法:一是求出原抛物线上任意两点平移后的坐标,利用待定系数法求出解析式;二是只考虑平移后的顶点坐标,即可求出解析式.2、B【分析】函数配方后得,抛物线开口向上,在时,取最小值为-3,列方程求解可得.【详解】∵,∴抛物线开口向上,且对称轴为,∴在时,有最小值-3,即:,解得,故选:B.【点睛】本题考查了二次函数的最值,熟练掌握二次函数的图象及增减性是解题的关键.3、C【分析】根据根与系数的关系可得a+b=2,根据一元二次方程的解的定义可得a2=2a+1,然后把a2+a+3b变形为3(a+b)+1,代入求值即可.【详解】由题意知,a+b=2,a2-2a-1=0,即a2=2a+1,则a2+a+3b=2a+1+a+3b=3(a+b)+1=3×2+1=1.故选C.【点睛】本题考查了根与系数的关系及一元二次方程的解,难度适中,关键掌握用根与系数的关系与代数式变形相结合进行解题.4、B【详解】试题分析:设母线长为R,底面半径为r,∴底面周长=2πr,底面面积=πr2,侧面面积=πrR,∵侧面积是底面积的2倍,∴2πr2=πrR,∴R=2r,设圆心角为n,有=2πr=πR,∴n=180°.故选B.考点:圆锥的计算5、A【分析】根据相反数的意义求解即可.【详解】的相反数是-,故选:A.【点睛】本题考查了相反数,在一个数的前面加上负号就是这个数的相反数.6、B【解析】∵AC>BC,∴AC是较长的线段,根据黄金分割的定义可知:=≈0.618,故A、C、D正确,不符合题意;AC2=AB•BC,故B错误,符合题意;故选B.7、C【分析】利用基本作图得出是角平分线的作图,进而解答即可.【详解】由作图步骤可得:是的角平分线,∴∠COE=∠DOE,∵OC=OD,OE=OE,OM=OM,∴△COE≌△DOE,∴∠CEO=∠DEO,∵∠COE=∠DOE,OC=OD,∴CM=DM,OM⊥CD,∴S四边形OCED=S△COE+S△DOE=,但不能得出,∴A、B、D选项正确,不符合题意,C选项错误,符合题意,故选C.【点睛】本题考查了作图﹣基本作图,全等三角形的判定与性质,等腰三角形的性质,三角形的面积等,熟练掌握5种基本作图(作一条线段等于已知线段;作一个角等于已知角;作已知线段的垂直平分线;作已知角的角平分线;过一点作已知直线的垂线)是解题的关键.8、D【分析】分别把各点坐标代入反比例函数y=,求出y1,y2,y1的值,再比较大小即可.【详解】∵点A(-2,y1)、B(-1,y2)、C(1,y1)

都在反比例函数y=的图象上,

∴y1=-2,y2=-4,y1=,∵-4<-2<,∴y2<y1<y1.故选D.【点睛】本题考查的是反比例函数图象上点的坐标特点,熟知反比例函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键.9、A【分析】根据正方体展开图的11种形式,对各选项分析判断即可得解.【详解】解:A、不是正方体展开图,符合题意;B、是正方体展开图,不符合题意;C、是正方体展开图,不符合题意;D、是正方体展开图,不符合题意.故选:A.【点睛】本题主要考查了正方体的展开图,从实物出发,结合具体的问题,辨析几何体的展开图,通过结合立体图形与平面图形的转化,建立空间观念,是解决此类问题的关键.10、C【分析】首先依次判断每个几何体的主视图,然后即可得到答案.【详解】解:A、主视图是矩形,B、主视图是三角形,C、主视图为圆,D、主视图是正方形,故选:C.【点睛】本题考查了简单几何体的三视图,熟知这些简单几何体的三视图是解决此类问题的关键.二、填空题(每小题3分,共24分)11、3或9或或【分析】先根据圆周角定理及正弦定理得到BC=8,再根据勾股定理求出AC=6,再分情况讨论,从而求出AE.【详解】∵AB是半圆O的直径,∴∠ACB=90,∵sin∠CAB=,∴,∵AB=10,∴BC=8,∴,∵点D为BC的中点,∴CD=4.∵∠ACB=∠DCE=90,①当∠CDE1=∠ABC时,△ACB∽△E1CD,如图∴,即,∴CE1=3,∵点E1在射线AC上,∴AE1=6+3=9,同理:AE2=6-3=3.②当∠CE3D=∠ABC时,△ABC∽△DE3C,如图∴,即,∴CE3=,∴AE3=6+=,同理:AE4=6-=.故答案为:3或9或或.【点睛】此题考查相似三角形的判定及性质,当三角形的相似关系不是用相似符号连接时,一定要分情况来确定两个三角形的对应关系,这是解此题容易错误的地方.12、【分析】根据“左加右减、上加下减”的原则进行解答即可.【详解】解:将抛物线y=2x2向上平移3个单位长度,再向右平移2个单位长度后,得到的抛物线的解析式为,

故答案为:【点睛】本题考查的是二次函数的图象与几何变换,要求熟练掌握平移的规律:左加右减,上加下减.13、1.【详解】∵将△ABC绕点B顺时针旋转60°,得到△BDE,∴△ABC≌△BDE,∠CBD=60°,∴BD=BC=12cm,∴△BCD为等边三角形,∴CD=BC=BD=12cm,在Rt△ACB中,AB===13,△ACF与△BDF的周长之和=AC+AF+CF+BF+DF+BD=AC+AB+CD+BD=5+13+12+12=1(cm),故答案为1.考点:旋转的性质.14、①【分析】主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形,据此【详解】解:圆锥的主视图、左视图是等腰三角形,俯视图是带有圆心的圆,长方体主视图,左视图,俯视图都是矩形,

圆柱体的主视图是矩形,左视图是矩形,俯视图是圆,所以三视图中有三角形的是①.故答案为①【点睛】本题主要考查三视图的知识,熟练掌握常见几何体的三视图是解题的关键.15、【分析】画树状图展示所有等可能的结果数,再找出两次选到的数都是无理数的结果数,然后根据概率公式求解.【详解】画树状图为:则共有6种等可能的结果,其中两次选到的数都是无理数有()和()2种,所以两次选到的数都是无理数的概率.故答案为:.【点睛】本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.注意概率=所求情况数与总情况数之比.16、1【解析】利用位似的性质得到AB:DE=OA:OD,然后把OA=1,OD=3,AB=2代入计算即可.【详解】解:∵△ABC与△DEF位似,原点O是位似中心,∴AB:DE=OA:OD,即2:DE=1:3,∴DE=1.故答案是:1.【点睛】考查了位似变换:如果两个图形不仅是相似图形,而且对应顶点的连线相交于一点,对应边互相平行,那么这样的两个图形叫做位似图形,这个点叫做位似中心.17、【分析】根据题意分别求出A,B,D三点的坐标,利用待定系数法求出抛物线的表达式,从而找到顶点,即可找到OE的高度.【详解】根据题意有∴设抛物线的表达式为将A,B,D代入得解得∴当时,故答案为:.【点睛】本题主要考查二次函数的最大值,掌握待定系数法是解题的关键.18、【分析】设正方形的边长为a,再分别计算出正方形与圆的面积,计算出其比值即可.【详解】解:设正方形的边长为a,则S正方形=a2,因为圆的半径为,所以S圆=π()2=,所以“小鸡正在圆圈内”啄食的概率为:故答案为:【点睛】本题考查几何概率,掌握正方形面积公式正确计算是解题关键.三、解答题(共66分)19、(1)w=-10x2+700x-10000;(2)即销售单价为35元时,该文具每天的销售利润最大;(3)A方案利润更高.【分析】试题分析:(1)根据利润=(单价-进价)×销售量,列出函数关系式即可.(2)根据(1)式列出的函数关系式,运用配方法求最大值.(3)分别求出方案A、B中x的取值范围,然后分别求出A、B方案的最大利润,然后进行比较.【详解】解:(1)w=(x-20)(250-10x+250)=-10x2+700x-10000.(2)∵w=-10x2+700x-10000=-10(x-35)2+2250∴当x=35时,w有最大值2250,即销售单价为35元时,该文具每天的销售利润最大.(3)A方案利润高,理由如下:A方案中:20<x≤30,函数w=-10(x-35)2+2250随x的增大而增大,∴当x=30时,w有最大值,此时,最大值为2000元.B方案中:,解得x的取值范围为:45≤x≤49.∵45≤x≤49时,函数w=-10(x-35)2+2250随x的增大而减小,∴当x=45时,w有最大值,此时,最大值为1250元.∵2000>1250,∴A方案利润更高20、(1)证明见解析;(2)证明见解析;(3)BD=2.【分析】(1)根据等边三角形的性质,利用SAS证得△ABD≌△BCE;

(2)由△ABD≌△BCE得∠BAD=∠CBE,又∠ABC=∠BAC,可证∠ABE=∠EAF,又∠AEF=∠BEA,由此可以证明△AEF∽△BEA;

(3)由△ABD≌△BCE得:∠BAD=∠FBD,又∠BDF=∠ADB,由此可以证明△BDF∽△ADB,然后可以得到,即BD2=AD•DF=(AF+DF)•DF.【详解】解:(1)∵△ABC是等边三角形,∴AB=BC,∠ABD=∠BCE,在△ABD与△BCE中∵,∴△ABD≌△BCE(SAS);(2)由(1)得:∠BAD=∠CBE,又∵∠ABC=∠BAC,∴∠ABE=∠EAF,又∵∠AEF=∠BEA,∴△AEF∽△BEA;(3)∵∠BAD=∠CBE,∠BDA=∠FDB,∴△ABD∽△BDF,∴,∴BD2=AD•DF=(AF+DF)•DF=8,∴BD=2.【点睛】本题考查的知识点是相似三角形的判定与性质,全等三角形的判定,等边三角形的性质,解题的关键是熟练的掌握相似三角形的判定与性质,全等三角形的判定,等边三角形的性质.21、(1)y=﹣x2+4x+5;(2)点P(,)时,S四边形APCD最大=;(3)当M点的坐标为(1,8)时,N点坐标为(2,13),当M点的坐标为(3,8)时,N点坐标为(2,3).【解析】试题分析:(1)设出抛物线解析式,用待定系数法求解即可;(2)先求出直线AB解析式,设出点P坐标(x,﹣x2+4x+5),建立函数关系式S四边形APCD=﹣2x2+10x,根据二次函数求出极值;(3)先判断出△HMN≌△AOE,求出M点的横坐标,从而求出点M,N的坐标.试题解析:(1)设抛物线解析式为y=a+9,∵抛物线与y轴交于点A(0,5),∴4a+9=5,∴a=﹣1,y=﹣+9=-+4x+5,(2)当y=0时,-+4x+5=0,∴x1=﹣1,x2=5,∴E(﹣1,0),B(5,0),设直线AB的解析式为y=mx+n,∵A(0,5),B(5,0),∴m=﹣1,n=5,∴直线AB的解析式为y=﹣x+5;设P(x,﹣+4x+5),∴D(x,﹣x+5),∴PD=-+4x+5+x﹣5=-+5x,∵AC=4,∴S四边形APCD=×AC×PD=2(-+5x)=-2+10x,∴当x=时,∴S四边形APCD最大=,(3)如图,过M作MH垂直于对称轴,垂足为H,∵MN∥AE,MN=AE,∴△HMN≌△AOE,∴HM=OE=1,∴M点的横坐标为x=3或x=1,当x=1时,M点纵坐标为8,当x=3时,M点纵坐标为8,∴M点的坐标为M1(1,8)或M2(3,8),∵A(0,5),E(﹣1,0),∴直线AE解析式为y=5x+5,∵MN∥AE,∴MN的解析式为y=5x+b,∵点N在抛物线对称轴x=2上,∴N(2,10+b),∵AE2=OA2+0E2=26∵MN=AE∴MN2=AE2,∴MN2=(2﹣1)2+[8﹣(10+b)]2=1+(b+2)2∵M点的坐标为M1(1,8)或M2(3,8),∴点M1,M2关于抛物线对称轴x=2对称,∵点N在抛物线对称轴上,∴M1N=M2N,∴1+(b+2)2=26,∴b=3,或b=﹣7,∴10+b=13或10+b=3∴当M点的坐标为(1,8)时,N点坐标为(2,13),当M点的坐标为(3,8)时,N点坐标为(2,3),考点:(1)待定系数法求函数关系式;(2)函数极值额确定方法;(3)平行四边形的性质和判定22、答案见解析【分析】由BE=CF可得BF=CE,再结合AB=DC,∠B=∠C可证得△ABF≌△DCE,问题得证.【详解】解∵BE=CF,∴BE+EF=CF+EF,即BF=CE.在△ABF和△DCE中,∴△ABF≌△DCE,∴∠A=∠D.【点睛】本题考查了全等三角形的判定和性质,是中考中比较常见的知识点,一般难度不大,需熟练掌握全等三角形的判定和性质.23、见解析【分析】由AB=CD知,得到,再由知AD=BC,结合∠ADE=∠CBE,∠DAE=∠BCE可证△ADE≌△CBE,从而得出答案.【详解】解:,,即,;,在△ADE和△CBE中,,∴△ADE≌△CBE(ASA),.【点睛】本题主要考查圆心角、弧、弦的关系,圆心角、弧、弦三者的关系可理解为:在同圆或等圆中,①圆心角相等,②所对的弧相等,③所对的弦相等,三项“知一推二”,一项相等,其余二项皆相等.24、(1)证明见解析;(2);(3)1.【分析】(1)根据两角对应相等的两个三角形相似证明即可.

(2)解直角三角形求出BC,由△ABD∽△ACB,推出,可得AD=.

(3)点D在AC边上运动的过程中,存在某个位置,使得DF=CF.作FH⊥AC于H,BM⊥AC于M,BN⊥FH于N.则∠NHM=∠BMH=∠BNH=90°,由△BFN∽△BDM,可得=tan∠BDF=tanA=,推出AN=AM=×12=9,推出CH=CMMH=CMAN=169=7,再利用等腰三角形的性质,求出CD即可解决问题.【详解】(1)证明:如图1中,∵BA=BC,∴∠A=∠ACB,∵∠BDE+∠CDE=∠A+∠ABD,∠BDE=∠A,∴∠BAD=∠CDE,∴△ABD∽△CDE.(2)解:如图2中,作BM⊥AC于M.在Rt△ABM中,则AM=AB•cosA=20×=16,由勾股定理,得到AB2=AM2+BM2,∴202=162+BM2,∴BM=12,∵AB=BC,BM⊥AC,∴AC=2AM=32,∵DE∥AB,∴∠BAD=∠ADE,∵∠ADE=∠B,∠B=∠ACB,∴∠BAD=∠ACB,∵∠ABD=∠CBA,∴△ABD∽△ACB,∴∴AD==.(3)点D在AC边上运动的过程中,存在某个位置,使得DF=CF.理由:作FH⊥AC于H,AM⊥AC于M,BN⊥FH于N.则∠NHM=∠BMH=∠BNH=90°,∴四边形BMHN为矩形,∴∠MBN=90°,MH=BN,∵AB=BC,BM⊥AC,∵AB=20,AM=CM=16,AC=32,BM

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论