版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年九上数学期末模拟试卷请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题(每小题3分,共30分)1.反比例函数与在同一坐标系的图象可能为()A. B. C. D.2.边长为2的正六边形的面积为()A.6 B.6 C.6 D.3.据路透社报道,中国华为技术有限公司推出新的服务器芯片组,此举正值中国努力提高芯片制造能力,并减少对进口芯片的严重依赖.华为技术部门还表示,电子元件的尺寸大幅度缩小,在芯片上某种电子元件大约只占有面积.其中0.00000065用科学记数法表示为()A. B. C. D.4.如图,在方格纸中,点A,B,C都在格点上,则tan∠ABC的值是()A.2 B. C. D.5.在平面直角坐标系中,对于二次函数,下列说法中错误的是()A.的最小值为1B.图象顶点坐标为(2,1),对称轴为直线C.当时,的值随值的增大而增大,当时,的值随值的增大而减小D.它的图象可以由的图象向右平移2个单位长度,再向上平移1个单位长度得到6.如图,是由两个正方体组成的几何体,则该几何体的俯视图为()A. B. C. D.7.下列各点在反比例函数y=-图象上的是()A.(3,2) B.(2,3) C.(-3,-2) D.(-,2)8.如图,△ABC中,点D,E在边AB,AC上,DE∥BC,△ADE与△ABC的周长比为2∶5,则AD∶DB为()A.2∶5 B.4∶25 C.2∶3 D.5∶29.如图所示的几何体的左视图是()A. B. C. D.10.某学校组织创城知识竞赛,共设有20道试题,其中有:社会主义核心价值观试题3道,文明校园创建标准试题6道,文明礼貌试题11道.学生小宇从中任选一道试题作答,他选中文明校园创建标准试题的概率是()A. B. C. D.二、填空题(每小题3分,共24分)11.如图,若点P在反比例函数y=﹣(x<0)的图象上,过点P作PM⊥x轴于点M,PN⊥y轴于点N,则矩形PMON的面积为_____.12.半径为6cm的圆内接正四边形的边长是____cm..13.如图,一组等距的平行线,点A、B、C分别在直线l1、l6、l4上,AB交l3于点D,AC交l3于点E,BC交于l5点F,若△DEF的面积为1,则△ABC的面积为_____.14.超市决定招聘一名广告策划人员,某应聘者三项素质测试的成绩如下表:测试项目创新能力综合知识语言表达测试成绩/分将创新能力,综合知识和语言表达三项测试成绩按的比例计入总成绩,则该应聘者的总成绩是__________分.15.如图,在直角坐标系中,已知点,,,,对述续作旋转变换,依次得、、、...,则的直角顶点的坐标为________.16.从这三个数中任取两个不同的数作为点的坐标,则点刚好落在第四象限的概率是_.17.如图,一个小球由地面沿着坡度i=1:3的坡面向上前进了10m,此时小球距离地面的高度为_________m.18.用配方法解方程时,可配方为,其中________.三、解答题(共66分)19.(10分)如图,已知AB为⊙O的直径,AD,BD是⊙O的弦,BC是⊙O的切线,切点为B,OC∥AD,BA,CD的延长线相交于点E.(1)求证:DC是⊙O的切线;(2)若AE=1,ED=3,求⊙O的半径.20.(6分)图①、图②均是6×6的正方形网格,每个小正方形的顶点称为格点.线段AB的端点均在格点上,按下列要求画出图形.(1)在图①中找到两个格点C,使∠BAC是锐角,且tan∠BAC=;(2)在图②中找到两个格点D,使∠ADB是锐角,且tan∠ADB=1.21.(6分)已知平行四边形ABCD,对角线AC、BD交于点O,线段EF过点O交AD于点E,交BC于点F.求证:OE=OF.22.(8分)如图,已知中,,为上一点,以为直径作与相切于点,连接并延长交的延长线于点.(1)求证:;(2)若,求的长.23.(8分)如图,灯塔在港口的北偏东方向上,且与港口的距离为80海里,一艘船上午9时从港口出发向正东方向航行,上午11时到达处,看到灯塔在它的正北方向.试求这艘船航行的速度.(结果保留根号)24.(8分)某商店经销一种学生用双肩包,已知这种双肩包的成本价为每个30元.市场调查发现,这种双肩包每天的销售量y(个)与销售单价x(元)有如下关系:y=﹣x+60(30≤x≤60).设这种双肩包每天的销售利润为w元.(1)求w与x之间的函数关系式;(2)这种双肩包销售单价定为多少元时,每天的销售利润最大?最大利润是多少元?(3)如果物价部门规定这种双肩包的销售单价不高于42元,该商店销售这种双肩包每天要获得200元的销售利润,销售单价应定为多少.25.(10分)如图,半圆的直径,将半圆绕点顺时针旋转得到半圆,半圆与交于点.(1)求的长;(2)求图中阴影部分的面积.(结果保留)26.(10分)如图,小巷左右两侧是竖直的墙,一架梯子AC斜靠在右墙,测得梯子与地面的夹角为45°,梯子底端与墙的距离CB=2米,若梯子底端C的位置不动,再将梯子斜靠在左墙,测得梯子与地面的夹角为60°,则此时梯子的顶端与地面的距离A'D的长是多少米?(结果保留根号)
参考答案一、选择题(每小题3分,共30分)1、B【分析】根据反比例函数和一次函数的性质逐个对选项进行分析即可.【详解】A根据反比例函数的图象可知,k>0,因此可得一次函数的图象应该递减,但是图象是递增的,所以A错误;B根据反比例函数的图象可知,k>0,,因此一次函数的图象应该递减,和图象吻合,所以B正确;C根据反比例函数的图象可知,k<0,因此一次函数的图象应该递增,并且过(0,1)点,但是根据图象,不过(0,1),所以C错误;D根据反比例函数的图象可知,k<0,因此一次函数的图象应该递增,但是根据图象一次函数的图象递减,所以D错误.故选B【点睛】本题主要考查反比例函数和一次函数的性质,关键点在于系数的正负判断,根据系数识别图象.2、A【解析】首先根据题意作出图形,然后可得△OBC是等边三角形,然后由三角函数的性质,求得OH的长,继而求得正六边形的面积.【详解】解:如图,连接OB,OC,过点O作OH⊥BC于H,∵六边形ABCDEF是正六边形,∴∠BOC=×360°=60°,∵OB=0C,∴△OBC是等边三角形,∴BC=OB=OC=2,∴它的半径为2,边长为2;∵在Rt△OBH中,OH=OB•sin60°=2×,∴边心距是:;∴S正六边形ABCDEF=6S△OBC=6××2×=6.故选:A.【点睛】本题考查圆的内接正六边形的性质、正多边形的内角和、等边三角形的判定与性质以及三角函数等知识.此题难度不大,注意掌握数形结合思想的应用.3、B【分析】把一个数表示成的形式,其中,n是整数,这种记数方法叫做科学记数法,根据科学记数法的要求即可解答.【详解】0.00000065=,故选:B.【点睛】此题考察科学记数法,注意n的值的确定方法,当原数小于1时,n是负整数,整数等于原数左起第一个非零数字前0的个数,按此方法即可正确求解.4、A【分析】根据直角三角形解决问题即可.【详解】解:作AE⊥BC,∵∠AEC=90°,AE=4,BE=2,∴tan∠ABC=,故选:A.【点睛】本题主要考查了解直角三角形,解题的关键是学会添加常用辅助线,构造直角三角形解决问题.5、C【分析】根据题目中的函数解析式,可以判断各个选项中的说法是否正确.【详解】解:二次函数,,∴该函数的图象开口向上,对称轴为直线,顶点为,当时,有最小值1,当时,的值随值的增大而增大,当时,的值随值的增大而减小;故选项A、B的说法正确,C的说法错误;根据平移的规律,的图象向右平移2个单位长度得到,再向上平移1个单位长度得到;故选项D的说法正确,故选C.【点睛】本题考查二次函数的性质、二次函数的最值,二次函数图象与几何变换,解答本题的关键是明确题意,利用二次函数的性质解答.6、D【分析】根据俯视图是从上面看得到的图形进行求解即可.【详解】俯视图为从上往下看,所以小正方形应在大正方形的右上角,故选D.【点睛】本题考查了简单组合体的三视图,熟知俯视图是从上方看得到的图形是解题的关键.7、D【分析】将各选项点的横坐标代入,求出函数值,判断是否等于纵坐标即可.【详解】解:A.将x=3代入y=-中,解得y=-2,故(3,2)不在反比例函数y=-图象上,故A不符合题意;B.将x=2代入y=-中,解得y=-3,故(2,3)不在反比例函数y=-图象上,故B不符合题意;C.将x=-3代入y=-中,解得y=2,故(-3,-2)不在反比例函数y=-图象上,故C不符合题意;D.将x=-代入y=-中,解得y=2,故(-,2)在反比例函数y=-图象上,故D符合题意;故选:D.【点睛】此题考查的是判断一个点是否在反比例函数图象上,解决此题的关键是将点的横坐标代入,求出函数值,判断是否等于纵坐标即可.8、C【分析】由题意易得,根据两个相似三角形的周长比等于相似比可直接得解.【详解】,,△ADE与△ABC的周长比为2∶5,,.故选C.【点睛】本题主要考查相似三角形的性质,关键是根据两个三角形相似,那么它们的周长比等于相似比.9、D【分析】根据左视图是从左边看得到的图形,可得答案.【详解】从左边看一个正方形被分成两部分,正方形中间有一条横向的虚线,如图:故选:D.【点睛】本题考查了几何体的三视图,从左边看得到的是左视图.10、B【分析】根据概率公式即可得出答案.【详解】解:∵共设有20道试题,其中文明校园创建标准试题6道,∴他选中文明校园创建标准的概率是,故选:B.【点睛】此题考查概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.二、填空题(每小题3分,共24分)11、1【分析】设PN=a,PM=b,根据P点在第二象限得P(﹣a,b),根据矩形的面积公式即可得到结论.【详解】解:设PN=a,PM=b,∵P点在第二象限,∴P(﹣a,b),代入y=中,得k=﹣ab=﹣1,∴矩形PMON的面积=PN•PM=ab=1,故答案为:1.【点睛】本题考查了反比例函数的几何意义,即S矩形PMON=12、6【详解】解:如图:圆的半径是6cm,那么内接正方形的边长为:AB=CB,因为:AB2+CB2=AC2,所以:AB2+CB2=122即AB2+CB2=144解得AB=cm.故答案为:6.13、【分析】在三角形中由同底等高,同底倍高求出,根据平行线分线段成比例定理,求出,最后由三角形的面积的和差法求得.【详解】连接DC,设平行线间的距离为h,AD=2a,如图所示:∵,,∴S△DEF=S△DEA,又∵S△DEF=1,∴S△DEA=1,同理可得:,又∵S△ADC=S△ADE+S△DEC,∴,又∵平行线是一组等距的,AD=2a,∴,∴BD=3a,设C到AB的距离为k,∴ak,,∴,又∵S△ABC=S△ADC+S△BDC,∴.故答案为:.【点睛】本题综合考查了平行线分线段成比例定理,平行线间的距离相等,三角形的面积求法等知识,重点掌握平行线分线段成比例定理,难点是作辅助线求三角形的面积.14、【详解】解:5+3+2=10.,故答案为:77.15、(1200,0)【分析】根据题目提供的信息,可知旋转三次为一个循环,图中第三次和第四次的直角顶点的坐标相同,由①→③时直角顶点的坐标可以求出来,从而可以解答本题.【详解】由题意可得,
△OAB旋转三次和原来的相对位置一样,点A(-3,0)、B(0,4),
∴OA=3,OB=4,∠BOA=90°,∴,∴旋转到第三次时的直角顶点的坐标为:(12,0),
∵301÷3=100…1
∴旋转第301次的直角顶点的坐标为:(1200,0),
故答案为:(1200,0).【点睛】本题考查了坐标与图形变化-旋转,是对图形变化规律,观察出每三次旋转为一个循环组依次循环,并且下一组的第一个直角三角形与上一组的最后一个直角三角形的直角顶点重合是解题的关键.16、【分析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果与P点刚好落在第四象限的情况即可求出问题答案.【详解】解:画树状图得:
∵共有6种等可能的结果,其中(1,−2),(3,−2)点落在第四象限,
∴P点刚好落在第四象限的概率为,
故答案为:.【点睛】本题考查的是用列表法或画树状图法求概率,熟记各象限内点的符号特点是解题关键.17、【详解】如图:Rt△ABC中,∠C=90°,i=tanA=1:3,AB=1.设BC=x,则AC=3x,根据勾股定理,得:,解得:x=(负值舍去).故此时钢球距地面的高度是米.18、-6【分析】把方程左边配成完全平方,与比较即可.【详解】,,,可配方为,.故答案为:.【点睛】本题考查用配方法来解一元二次方程,熟练配方是解决此题的关键.三、解答题(共66分)19、(1)证明见解析;(2)1.【解析】试题分析:(1)、连接DO,根据平行线的性质得出∠DAO=∠COB,∠ADO=∠COD,结合OA=OD得出∠COD=∠COB,从而得出△COD和△COB全等,从而得出切线;(2)、设⊙O的半径为R,则OD=R,OE=R+1,根据Rt△ODE的勾股定理求出R的值得出答案.试题解析:(1)证明:连结DO.∵AD∥OC,∴∠DAO=∠COB,∠ADO=∠COD.又∵OA=OD,∴∠DAO=∠ADO,∴∠COD=∠COB.在△COD和△COB中∵OD=OB,OC=OC,∴△COD≌△COB(SAS),∴∠CDO=∠CBO.∵BC是⊙O的切线,∴∠CBO=90°,∴∠CDO=90°,又∵点D在⊙O上,∴CD是⊙O的切线;(2)设⊙O的半径为R,则OD=R,OE=R+1,∵CD是⊙O的切线,∴∠EDO=90°,∴ED2+OD2=OE2,∴32+R2=(R+1)2,解得R=1,∴⊙O的半径为1.20、(1)如图①点C即为所求作的点;见解析;(2)如图②,点D即为所求作的点,见解析.【分析】(1)在图①中找到两个格点C,使∠BAC是锐角,且tan∠BAC=;(2)在图②中找到两个格点D,使∠ADB是锐角,且tan∠ADB=1.【详解】解:(1)如图①点C即为所求作的点;(2)如图②,点D即为所求作的点.【点睛】本题考查了作图——应用与设计作图,解直角三角形.解决本题的关键是准确画图.21、证明见解析.【分析】由四边形ABCD是平行四边形,可得AD∥BC,OA=OC,继而可利用ASA判定△AOE≌△COF,继而证得OE=OF.【详解】证明:∵四边形ABCD是平行四边形,∴AD∥BC,OA=OC,∴∠OAE=∠OCF,在△AOE和△COF中,,∴△AOE≌△COF(ASA),∴OE=OF.【点睛】此题考查了平行四边形的性质以及全等三角形的判定与性质.此题难度不大,注意掌握数形结合思想的应用.22、(1)见解析;(2)【分析】(1)连接OD,根据切线的性质得到OD⊥BC,根据平行线的判定定理得到OD∥AC,求得∠ODE=∠F,根据等腰三角形的性质得到∠OED=∠ODE,等量代换得到∠OED=∠F,于是得到结论;
(2)根据平行得出,再由可得到关于BE的方程,从而得出结论.【详解】(1)证明:连接,∵切于点,∴.∴.又,∴,∴.∵,∴,∴.∴.(2)解:∵,∴,∴.∵,∴,∴,∴.【点睛】本题考查了切线的性质,平行线的性质,相似三角形的判定和性质,等腰三角形的判定与性质等知识,正确的作出辅助线是解题的关键.23、海里/时【分析】利用直角三角形性质边角关系,BO=AO×cos30°求出BO,然后除以船从O到B所用时间即可.【详解】解:由题意知:∠AOB=30°,在Rt△AOB中,OB=OA×cos∠AOB=80×=40(海里),航行速度为:(海里/时).【点睛】本题考查锐角三角函数的运用,熟练掌握直角三角形的边角关系是关键.24、(1)w=﹣x2+90x﹣1800;(2)当x=45时,w有最大值,最大值是1;(3)该商店销售这种双肩包每天要获得200元的销售利润,销售单价应定为40
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 二零二五年购销合同:某钢铁企业向供应商订购0万吨原材料2篇
- 二零二五年度高铁站房PC构件预制及吊装工程合同2篇
- 二零二五年度物业管理顾问合同(含交通枢纽管理)2篇
- 二零二五版货车司机意外伤害赔偿合同范本3篇
- 二零二五年度绿色环保型二手房按揭交易合同模板3篇
- 二零二五食堂承包合同(大路食堂运营管理)3篇
- 二零二五版二手房买卖与家具选购代理合同3篇
- 税务局2025年度企业社会责任报告编制合同
- 二零二五年度智慧社区家居安装合同规范3篇
- 二零二五年度虫草科研合作与技术转移合同范本3篇
- 《新生儿预防接种》课件
- 小学五年级上册数学寒假作业每日一练
- DB1303T382-2024 创伤性休克患者护理指南
- 2024年03月内蒙古中国银行内蒙古分行春季校园招考笔试历年参考题库附带答案详解
- 2024-2025学年华东师大新版八年级上册数学期末复习试卷(含详解)
- 《道路车辆 48V供电电压的电气及电子部件 电性能要求和试验方法》文本以及编制说明
- 2024年新高考I卷数学高考试卷(原卷+答案)
- 十八项医疗核心制度考试题与答案
- 2024年鄂尔多斯市国资产投资控股集团限公司招聘管理单位遴选500模拟题附带答案详解
- 篝火晚会流程
- 船形乌头提取工艺优化
评论
0/150
提交评论