版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年九上数学期末模拟试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题(每题4分,共48分)1.由的图像经过平移得到函数的图像说法正确的是()A.先向左平移6个单位长度,然后向上平移7个单位长度B.先向左平移6个单位长度,然后向下平移7个单位长度C.先向右平移6个单位长度,然后向上平移7个单位长度D.先向右平移6个单位长度,然后向下平移7个单位长度2.⊙O的半径为15cm,AB,CD是⊙O的两条弦,AB∥CD,AB=24cm,CD=18cm,则AB和CD之间的距离是()A.21cm B.3cmC.17cm或7cm D.21cm或3cm3.函数与,在同一坐标系中的图象可能是()A.B.C.D.4.如图,⊙O是△ABC的外接圆,若∠AOB=100°,则∠ACB的度数是()A.60° B.50° C.40° D.30°5.服装店将进价为每件100元的服装按每件x(x>100)元出售,每天可销售(200﹣x)件,若想获得最大利润,则x应定为()A.150元 B.160元 C.170元 D.180元6.一组数据由五个正整数组成,中位数是3,且惟一众数是7,则这五个正整数的平均数是()A.4 B.5 C.6 D.87.在下列命题中,正确的是A.对角线相等的四边形是平行四边形B.有一个角是直角的四边形是矩形C.有一组邻边相等的平行四边形是菱形D.对角线互相垂直平分的四边形是正方形8.如图,某同学用圆规画一个半径为的圆,测得此时,为了画一个半径更大的同心圆,固定端不动,将端向左移至处,此时测得,则的长为()A. B. C. D.9.一元二次方程的一次项系数是()A. B. C. D.10.如图,为的直径,为上两点,若,则的大小为().A.60° B.50° C.40° D.20°11.如图,点的坐标分别为和,抛物线的顶点在线段上运动,与轴交于两点(在的左侧),若点的横坐标的最小值为0,则点的横坐标最大值为()A.6 B.7 C.8 D.912.如图,二次函数y=ax1+bx+c的图象与x轴交于点A(﹣1,0),与y轴的交点B在(0,1)与(0,3)之间(不包括这两点),对称轴为直线x=1.下列结论:abc<0;②9a+3b+c>0;③若点M(,y1),点N(,y1)是函数图象上的两点,则y1<y1;④﹣<a<﹣.其中正确结论有()A.1个 B.1个 C.3个 D.4个二、填空题(每题4分,共24分)13.已知二次函数y=x2,当x>0时,y随x的增大而_____(填“增大”或“减小”).14.如图,在扇形中,,正方形的顶点是的中点,点在上,点在的延长线上,当正方形的边长为时,则阴影部分的面积为_________.(结果保留)15.方程的根为.16.将“定理”的英文单词theorem中的7个字母分别写在7张相同的卡片上,字面朝下随意放在桌子上,任取一张,那么取到字母e的概率为.17.已知点P(a,b)在反比例函数y=的图象上,则ab=_____.18.抛物线经过点,则这条抛物线的对称轴是直线__________.三、解答题(共78分)19.(8分)小明、小林是景山中学九年级的同班同学,在六月份举行的招生考试中,他俩都被亭湖高级中学录取,并将被编入A、B、C三个班,他俩希望编班时分在不同班.(1)请你用画树状图法或列举法,列出所有可能的结果;(2)求两人不在同班的概率.20.(8分)先阅读下列材料,然后解后面的问题.材料:一个三位自然数(百位数字为a,十位数字为b,个位数字为c),若满足a+c=b,则称这个三位数为“欢喜数”,并规定F()=ac.如374,因为它的百位上数字3与个位数字4之和等于十位上的数字7,所以374是“欢喜数”,∴F(374)=3×4=1.(1)对于“欢喜数”,若满足b能被9整除,求证:“欢喜数”能被99整除;(2)已知有两个十位数字相同的“欢喜数”m,n(m>n),若F(m)﹣F(n)=3,求m﹣n的值.21.(8分)富平因取“富庶太平”之意而得名,是华夏文明重要发祥地之一.某班举行关于“美丽的富平”的演讲活动.小明和小丽都想第一个演讲,于是他们通过做游戏来决定谁第一个来演.讲游戏规则是:在一个不透明的袋子中有一个黑球a和两个白球b、c,(除颜色外其它均相同),小丽从袋子中摸出一个球,放回后搅匀,小明再从袋子中摸出一个球,若两次摸到的球颜色相同,则小丽获胜,否则小明获胜,请你用树状图或列表的方法分别求出小丽与小明获胜的概率,并说明这个游戏规则对双方公平吗?22.(10分)关于的一元二次方程有两个不相等的实数根.(1)求的取值范围;(2)若满足,求的值.23.(10分)因粤港澳大湾区和中国特色社会主义先行示范区的双重利好,深圳已成为国内外游客最喜欢的旅游目的地城市之一.深圳著名旅游“网红打卡地”东部华侨城景区在2018年春节长假期间,共接待游客达20万人次,预计在2020年春节长假期间,将接待游客达28.8万人次.(1)求东部华侨城景区2018至2020年春节长假期间接待游客人次的年平均增长率;(2)东部华侨城景区一奶茶店销售一款奶茶,每杯成本价为6元,根据销售经验,在旅游旺季,若每杯定价25元,则平均每天可销售300杯,若每杯价格降低1元,则平均每天可多销售30杯.2020年春节期间,店家决定进行降价促销活动,则当每杯售价定为多少元时,既能让顾客获得最大优惠,又可让店家在此款奶茶实现平均每天6300元的利润额?24.(10分)我们不妨约定:如图①,若点D在△ABC的边AB上,且满足∠ACD=∠B(或∠BCD=∠A),则称满足这样条件的点为△ABC边AB上的“理想点”.(1)如图①,若点D是△ABC的边AB的中点,AC=,AB=4.试判断点D是不是△ABC边AB上的“理想点”,并说明理由.(2)如图②,在⊙O中,AB为直径,且AB=5,AC=4.若点D是△ABC边AB上的“理想点”,求CD的长.(3)如图③,已知平面直角坐标系中,点A(0,2),B(0,-3),C为x轴正半轴上一点,且满足∠ACB=45°,在y轴上是否存在一点D,使点A是B,C,D三点围成的三角形的“理想点”,若存在,请求出点D的坐标;若不存在,请说明理由.25.(12分)探究题:如图1,和均为等边三角形,点在边上,连接.(1)请你解答以下问题:①求的度数;②写出线段,,之间数量关系,并说明理由.(2)拓展探究:如图2,和均为等腰直角三角形,,点在边上,连接.请判断的度数及线段,,之间的数量关系,并说明理由.(3)解决问题:如图3,在四边形中,,,,与交于点.若恰好平分,请直接写出线段的长度.26.解方程:x2+2x﹣1=1.
参考答案一、选择题(每题4分,共48分)1、C【分析】分别确定出两个抛物线的顶点坐标,再根据左减右加,上加下减确定平移方向即可得解.【详解】解:抛物线y=2x2的顶点坐标为(0,0),
抛物线y=2(x-6)2+1的顶点坐标为(6,1),所以,先向右平移6个单位,再向上平移1个单位可以由抛物线y=2x2平移得到抛物线y=2(x-6)2+1.
故选:C.【点睛】本题考查了二次函数图象与几何变换,利用点的平移规律左减右加,上加下减解答是解题的关键.2、D【分析】作OE⊥AB于E,交CD于F,连结OA、OC,如图,根据平行线的性质得OF⊥CD,再利用垂径定理得到AE=AB=12cm,CF=CD=9cm,接着根据勾股定理,在Rt△OAE中计算出OE=9cm,在Rt△OCF中计算出OF=12cm,然后分类讨论:当圆心O在AB与CD之间时,EF=OF+OE;当圆心O不在AB与CD之间时,EF=OF-OE.【详解】解:作OE⊥AB于E,交CD于F,连结OA、OC,如图,
∵AB∥CD,
∴OF⊥CD,
∴AE=BE=AB=12cm,CF=DF=CD=9cm,
在Rt△OAE中,∵OA=15cm,AE=12cm,
∴OE=,
在Rt△OCF中,∵OC=15cm,CF=9cm,
∴OF=,
当圆心O在AB与CD之间时,EF=OF+OE=12+9=21cm(如图1);
当圆心O不在AB与CD之间时,EF=OF-OE=12-9=3cm(如图2);
即AB和CD之间的距离为21cm或3cm.
故选:D.【点睛】本题考查了垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的两条弧.也考查了勾股定理.学会运用分类讨论的思想解决数学问题.3、D【解析】由二次函数y=ax2+a中一次项系数为0,我们易得函数y=ax2+a的图象关于y轴对称,然后分当a>0时和a<0时两种情况,讨论函数y=ax2+a的图象与函数y=(a≠0)的图象位置、形状、顶点位置,可用排除法进行解答.【详解】解:由函数y=ax2+a中一次项系数为0,
我们易得函数y=ax2+a的图象关于y轴对称,可排除A;
当a>0时,函数y=ax2+a的图象开口方向朝上,顶点(0,a)点在x轴上方,可排除C;
当a<0时,函数y=ax2+a的图象开口方向朝下,顶点(0,a)点在x轴下方,
函数y=(a≠0)的图象位于第二、四象限,可排除B;
故选:D.【点睛】本题考查的知识点是函数的表示方法-图象法,熟练掌握二次函数及反比例函数图象形状与系数的关系是解答本题的关键.4、B【分析】直接利用圆周角定理可求得∠ACB的度数.【详解】∵⊙O是△ABC的外接圆,∠AOB=100°,
∴∠ACB=∠AOB=100°=50.
故选:B.【点睛】本题主要考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角是所对的圆心角的一半.5、A【分析】设获得的利润为y元,由题意得关于x的二次函数,配方,写成顶点式,利用二次函数的性质可得答案.【详解】解:设获得的利润为y元,由题意得:∵a=﹣1<0∴当x=150时,y取得最大值2500元.故选A.【点睛】本题考查了二次函数在实际问题中的应用,正确地写出函数关系式,并明确二次函数的性质,是解题的关键.6、A【分析】根据题意,五个正整数中3是中位数,唯一众数是7,可以得知比3大的有2个数,比3小的有2个数,且7有2个,然后求出这五个数的平均数即可.【详解】由五个正整数知,中位数是3说明比3大的有2个数,比3小的有2个数,唯一众数是7,则7有2个,所以这五个正整数分别是1、2、3、7、7,计算平均数是(1+2+3+7+7)÷5=4,故选:A.【点睛】本题考查了数据的收集与处理,中位数,众数,平均数的概念以及应用,掌握数据的收集与处理是解题的关键.7、C【分析】根据平行四边形、矩形、菱形、正方形的判定方法逐项分析解答即可.【详解】解:A、∵等腰梯形的对角线相等,但不是平行四边形,∴应对角线相等的四边形不一定是平行四边形,故不正确;B、∵有一个角是直角的四边形可能是矩形、直角梯形,∴有一个角是直角的四边形不一定是矩形,故不正确;C、∵有一组邻边相等的平行四边形是菱形,故正确;D、对角线互相垂直平分的四边形是菱形,故不正确.故选:C.【点睛】本题考查了平行四边形、矩形、菱形、正方形的判定方法的理解,熟练掌握平行四边形、矩形、菱形、正方形的判定方法的判定方法是解答本题的关键.8、A【分析】△ABO是等腰直角三角形,利用三角函数即可求得OA的长,过O'作O'D⊥AB于点D,在直角△AO'D中利用三角函数求得AD的长,则AB'=2AD,然后根据BB'=AB'-AB即可求解.【详解】解:在等腰直角△OAB中,AB=1,则OA=cm,AO'=cm,∠AO'D=×120°=60°,
过O'作O'D⊥AB于点D.
则AD=AO'•sin60°=2×=.
则AB'=2AD=2,
故BB'=AB'-AB=2-1.
故选:A.【点睛】本题考查了三角函数的基本概念,主要是三角函数的概念及运算,关键把实际问题转化为数学问题加以计算.9、C【分析】根据一元二次方程的一般式判断即可.【详解】解:该方程的一次项系数为.故选:【点睛】本题考查的是一元二次方程的项的系数,不是一般式的先化成一般式再判断.10、B【分析】根据题意连接AD,再根据同弧的圆周角相等,即可计算的的大小.【详解】解:连接,∵为的直径,∴.∵,∴,∴.故选B.【点睛】本题主要考查圆弧的性质,同弧的圆周角相等,这是考试的重点,应当熟练掌握.11、B【分析】根据待定系数法求得顶点是A时的解析式,进而即可求得顶点是B时的解析式,然后求得与x轴的交点即可求得.【详解】解:∵点C的横坐标的最小值为0,此时抛物线的顶点为A,
∴设此时抛物线解析式为y=a(x-1)2+1,
代入(0,0)得,a+1=0,
∴a=-1,
∴此时抛物线解析式为y=-(x-1)2+1,
∵抛物线的顶点在线段AB上运动,
∴当顶点运动到B(5,4)时,点D的横坐标最大,
∴抛物线从A移动到B后的解析式为y=-(x-5)2+4,
令y=0,则0=-(x-5)2+4,
解得x=1或3,
∴点D的横坐标最大值为1.
故选:B.【点睛】本题考查了待定系数法求二次函数的解析式以及二次函数的性质,明确顶点运动到B(5,4)时,点D的横坐标最大,是解题的关键.12、D【分析】根据二次函数的图象与系数的关系即可求出答案.【详解】①由开口可知:a<0,∴对称轴x=−>0,∴b>0,由抛物线与y轴的交点可知:c>0,∴abc<0,故①正确;②∵抛物线与x轴交于点A(-1,0),对称轴为x=1,∴抛物线与x轴的另外一个交点为(5,0),∴x=3时,y>0,∴9a+3b+c>0,故②正确;③由于<1<,且(,y1)关于直线x=1的对称点的坐标为(,y1),∵<,∴y1<y1,故③正确,④∵−=1,∴b=-4a,∵x=-1,y=0,∴a-b+c=0,∴c=-5a,∵1<c<3,∴1<-5a<3,∴-<a<-,故④正确故选D.【点睛】本题考查二次函数的图象与性质,解题的关键是熟练运用图象与系数的关系,本题属于中等题型.二、填空题(每题4分,共24分)13、增大.【分析】根据二次函数的增减性可求得答案【详解】∵二次函数y=x2的对称轴是y轴,开口方向向上,∴当y随x的增大而增大,故答案为增大.【点睛】本题考查的知识点是二次函数的性质,解题的关键是熟练的掌握二次函数的性质.14、【分析】连结OC,根据等腰三角形的性质可求OC的长,根据题意可得出阴影部分的面积=扇形BOC的面积-三角形ODC的面积,依此列式计算即可求解.【详解】解:连接OC,∵在扇形AOB中∠AOB=90°,正方形CDEF的顶点C是弧AB的中点,∴∠COD=45°,∴OC=CD=4,∴阴影部分的面积=扇形BOC的面积-三角形ODC的面积=-×4×4=4π-1,故答案为4π-1.【点睛】考查了正方形的性质和扇形面积的计算,解题的关键是得到扇形半径的长度.15、.【解析】试题分析:x(x-1)=0解得:=0,=1.考点:解一元二次方程.16、【解析】试题分析:根据概率的求法,找准两点:①全部等可能情况的总数;②符合条件的情况数目;二者的比值就是其发生的概率.因此,∵theorem中的7个字母中有2个字母e,∴任取一张,那么取到字母e的概率为.17、2【解析】接把点P(a,b)代入反比例函数y=即可得出结论.【详解】∵点P(a,b)在反比例函数y=的图象上,∴b=,∴ab=2,故答案为:2.【点睛】本题考查的是反比例函数图象上点的坐标特点,熟知反比例函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键.18、【分析】根据抛物线的轴对称性,即可得到答案.【详解】∵抛物线经过点,且点,点关于直线x=1对称,∴这条抛物线的对称轴是:直线x=1.故答案是:.【点睛】本题主要考查二次函数的图象与性质,掌握抛物线的轴对称性,是解题的关键.三、解答题(共78分)19、(1)9种结果,见解析;(2)P=【分析】(1)小明有3种分班情况,小林有3种分班情况,共有9种结果;(2)根据(1)即可列式求出两人不在同班的概率.【详解】(1)树状图如下:所有可能的结果共有9种.(2)两人不在同班的有6种,∴P(两人不在同班)==.【点睛】此题考查求事件的概率,熟记概率的公式,正确代入求值即可.20、(1)详见解析;(2)99或2.【解析】(1)首先由题意可得a+c=b,将欢喜数展开,因为要证明“欢喜数”能被99整除,所以将展开式中100a拆成99a+a,这样展开式中出现了a+c,将a+c用b替代,整理出最终结果即可;(2)首先设出两个欢喜数m、n,表示出F(m)、F(n)代入F(m)﹣F(n)=3中,将式子变形分析得出最终结果即可.【详解】(1)证明:∵为欢喜数,∴a+c=b.∵=100a+10b+c=99a+10b+a+c=99a+11b,b能被9整除,∴11b能被99整除,99a能被99整除,∴“欢喜数”能被99整除;(2)设m=,n=(且a1>a2),∵F(m)﹣F(n)=a1•c1﹣a2•c2=a1•(b﹣a1)﹣a2(b﹣a2)=(a1﹣a2)(b﹣a1﹣a2)=3,a1、a2、b均为整数,∴a1﹣a2=1或a1﹣a2=3.∵m﹣n=100(a1﹣a2)﹣(a1﹣a2)=99(a1﹣a2),∴m﹣n=99或m﹣n=2.∴若F(m)﹣F(n)=3,则m﹣n的值为99或2.【点睛】做此类阅读理解类题目首先要充分理解题目,会运用因式分解将式子变形.21、小丽为,小军为,这个游戏不公平,见解析【分析】画出树状图,得出总情况数及两次模到的球颜色相同和不同的情况数,即可得小丽与小明获胜的概率,根据概率即可得游戏是否公平.【详解】根据题意两图如下:共有种等情况数,其中两次模到的球颜色相同的情况数有种,不同的有种,小丽获胜的概率是小军获胜的概率是,所以这个游戏不公平.【点睛】本题考查游戏公平性的判断,判断游戏的公平性要计算每个参与者获胜的概率,概率相等则游戏公平,否则游戏不公平,用到的知识点为:概率=所求情况数与总情况数之比.22、(1);(2)a=-1【分析】(1)方程有两个不相等的实数根,即为方程根的判别式大于0,由此可得关于a的不等式,解不等式即可求出结果;(2)根据一元二次方程的根与系数的关系可得关于a的方程,解方程即可求出a的值,再结合(1)的结论取舍即可.【详解】解:(1)∵方程有两个不相等的实数根,∴,解得:,∴的取值范围为:;(2)∵是方程的两个根,∴,,∵,∴,∴,解得:,∵,∴.【点睛】本题考查了一元二次方程的根的判别式、根与系数的关系和一元二次方程的解法,属于常考题型,熟练掌握上述知识是解题关键.23、(1)22%;(2)22元.【分析】(1)设年平均增长率为x,根据东部华侨城景区在238年春节长假期间,共接待游客达22万人次,预计在2222年春节长假期间,将接待游客达1.8万人次.列出方程求解即可;(2)设当每杯售价定为y元时,店家在此款奶茶实现平均每天6322元的利润额,由题意得关于y的方程,解方程并对方程的解作出取舍即可.【详解】解:(1)设年平均增长率为x,由题意得:22(1+x)2=1.8,解得:x1=2.2=22%,x2=﹣2.2(舍).答:年平均增长率为22%;(2)设当每杯售价定为y元时,店家在此款奶茶实现平均每天6322元的利润额,由题意得:(y﹣6)[322+32(25﹣y)]=6322,整理得:y2﹣41y+422=2,解得:y1=22,y2=3.∵让顾客获得最大优惠,∴y=22.答:当每杯售价定为22元时,既能让顾客获得最大优惠,又可让店家在此款奶茶实现平均每天6322元的利润额.
【点睛】本题考查了一元二次方程在实际问题中的应用,理清题中的数量关系并正确列出方程是解题的关键.24、(1)是,理由见解析;(2);(3)D(0,42)或D(0,6)【分析】(1)依据边长AC=,AB=4,D是边AB的中点,得到AC2=,可得到两个三角形相似,从而得到∠ACD=∠B;(2)由点D是△ABC的“理想点”,得到∠ACD=∠B或∠BCD=∠A,分两种情况证明均得到CD⊥AB,再根据面积法求出CD的长;(3)使点A是B,C,D三点围成的三角形的“理想点”,应分两种情况讨论,利用三角形相似分别求出点D的坐标即可.【详解】(1)D是△ABC边AB上的“理想点”,理由:∵AB=4,点D是△ABC的边AB的中点,∴AD=2,∵AC2=8,,∴AC2=,又∵∠A=∠A,∴△ADC∽△ACB,∴∠ACD=∠B,∴D是△ABC边AB上的“理想点”.(2)如图②,∵点D是△ABC的“理想点”,∴∠ACD=∠B或∠BCD=∠A,当∠ACD=∠B时,∵∠ACD+∠BCD=90,∴∠BCD+∠B=90,∴∠CDB=90,当∠BCD=∠A时,同理可得CD⊥AB,在Rt△ABC中,∵∠ACB=90,AB=5,AC=4,∴BC==3,∵,∴,∴.(3)如图③,存在.过点A作MA⊥AC交CB的延长线于点M,∵∠MAC=∠AOC=90,∠ACM=45,∴∠AMC=∠ACM=45,∴AM=AC,∵∠MAH+∠CAO=90,∠CAO+∠ACO=90,∴∠MAH=∠ACO,∴△AHM≌△COA∴MH=OA,OC=AH,设C(a,0),∵A(0,2),B(0,-3),∴OA=MH=2,OB=3,AB=5,OC=AH=a,BH=a-5,∵MH∥OC,∴,∴,解得a=6或a=-1(舍去),经检验a=6是原分式方程的解,∴C(6,0),OC=6.①当∠D1CA=∠ABC时,点A是△BCD1的“理想点”,设D1(0,m),∵∠D1CA=∠A
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年技术主管聘请合同标准版
- 2024年排水管供需合同
- 2024年新建住宅小区物业服务合同
- 2024年拱门空飘安装工程承包合同
- 2024年房产回购合同范本
- 2024年教育培训服务合同协议
- DB4106T 57-2022 社会化环境检测机构服务规范
- 2024年度区块链应用开发合同
- 2024年新型医疗器械研发与销售合同
- 04年塔吊设备进口销售合同
- 2024至2030年中国手机配件产业需求预测及发展趋势前瞻报告
- 2024年小学闽教版全册英语词汇表
- 课题开题汇报(省级课题)
- 清真食品安全管理制度
- 学校心理健康教育合作协议书
- 2024江苏省沿海开发集团限公司招聘23人(高频重点提升专题训练)共500题附带答案详解
- 2024年初级社会体育指导员(游泳)技能鉴定考试题库(含答案)
- 湖北省危险废物监管物联网系统管理计划填报说明
- Unit6ADayintheLife教学设计2024-2025学年人教版(2024)英语七年级上册
- 苏教版三年级上册数学期末考试试卷及解析答案
- 2024年个人劳务承包合同书
评论
0/150
提交评论