版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年九上数学期末模拟试卷考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每题4分,共48分)1.在Rt△ABC中,∠C=90°,AB=13,AC=5,则tanA的值为A. B. C. D.2.菱形的两条对角线长分别为60cm和80cm,那么边长是()A.60cm B.50cm C.40cm D.80cm3.在平面直角坐标系中,把抛物线y=2x2绕原点旋转180°,再向右平移1个单位,向下平移2个单位,所得的抛物线的函数表达式为()A.y=2(x﹣1)2﹣2 B.y=2(x+1)2﹣2C.y=﹣2(x﹣1)2﹣2 D.y=﹣2(x+1)2﹣24.如图,⊙O是△ABC的外接圆,∠BAC=60°,若⊙O的半径OC为2,则弦BC的长为()A.1 B. C.2 D.5.如图,三个边长均为的正方形重叠在一起,、是其中两个正方形对角线的交点,则两个阴影部分面积之和是()A. B. C. D.6.如图,与正方形ABCD的两边AB,AD相切,且DE与相切于点E.若的半径为5,且,则DE的长度为()A.5 B.6 C. D.7.钓鱼岛是中国的固有领土,位于中国东海,面积为4400000m2,数据4400000用科学记数法表示为()A.4.4×106 B.44×105 C.4×106 D.0.44×1078.如图,在四边形ABCD中,BD平分∠ABC,∠BAD=∠BDC=90°,E为BC的中点,AE与BD相交于点F,若BC=4,∠CBD=30°,则AE的长为()A. B. C. D.9.二次函数y=+2的顶点是()A.(1,2) B.(1,−2) C.(−1,2) D.(−1,−2)10.下列各点在抛物线上的是()A. B. C. D.11.某公司一月份缴税40万元,由于公司的业绩逐月稳步上升,假设每月的缴税增长率相同,第一季度共缴税145.6万元,该公司这季度缴税的月平均增长率为多少?设公司这季度缴税的月平均增长率为x,则下列所列方程正确的是()A. B.C. D.12.下表是二次函数的的部分对应值:············则对于该函数的性质的判断:①该二次函数有最小值;②不等式的解集是或③方程的实数根分别位于和之间;④当时,函数值随的增大而增大;其中正确的是:A.①②③ B.②③ C.①② D.①③④二、填空题(每题4分,共24分)13.如图,AB是⊙O的直径,弦CD⊥AB于E,若AB=20,CD=16,则OE的长为______.14.如图,E,G,F,H分别是矩形ABCD四条边上的点,EF⊥GH,若AB=2,BC=3,则EF︰GH=.15.从,0,,,1.6中随机取一个数,取到无理数的概率是__________.16.如图,在ABCD中,点E是AD边上一点,AE:ED=1:2,连接AC、BE交于点F.若S△AEF=1,则S四边形CDEF=_______.17.如图,AB是⊙O的直径,BC是⊙O的弦.若∠OBC=60°,则∠BAC=__.18.计算:|﹣3|﹣sin30°=_____.三、解答题(共78分)19.(8分)在一个不透明的盒子里装有黑、白两种颜色的球共50个,这些球除颜色外其余完全相同.王颖做摸球试验,搅匀后,她从盒子里随机摸出一个球记下颜色后,再把球放回盒子中,不断重复上述过程,如表是试验中的一组统计数据:摸球的次数n10020030050080010003000摸到白球的次数m651241783024806001800摸到白球的频率0.650.620.5930.6040.60.60.6(1)请估计:当n很大时,摸到白球的频率将会接近;(精确到0.1)(2)若从盒子里随机摸出一个球,则摸到白球的概率的估计值为;(3)试估算盒子里黑、白两种颜色的球各有多少个?20.(8分)近期江苏省各地均发布“雾霾”黄色预警,我市某口罩厂商生产一种新型口罩产品,每件制造成本为18元,试销过程中发现,每月销售量y(万件)与销售单价x(元)之间的关系满足下表.销售单价x(元/件)…20253040…每月销售量y(万件)…60504020…(1)请你从所学过的一次函数、二次函数和反比例函数三个模型中确定哪种函数能比较恰当地表示y与x的变化规律,并直接写出y与x之间的函数关系式为__________;(2)当销售单价为多少元时,厂商每月获得的利润为440万元?(3)如果厂商每月的制造成本不超过540万元,那么当销售单价为多少元时,厂商每月获得的利润最大?最大利润为多少万元?21.(8分)如图,△ABC中,AD⊥BC,垂足是D,若BC=14,AD=12,tan∠BAD=,求sinC的值.22.(10分)如图,△ABC内接于⊙O,AB=AC,∠BAC=36°,过点A作AD∥BC,与∠ABC的平分线交于点D,BD与AC交于点E,与⊙O交于点F.(1)求∠DAF的度数;(2)求证:AE2=EF•ED;(3)求证:AD是⊙O的切线.23.(10分)已知抛物线的顶点坐标为(1,2),且经过点(3,10)求这条抛物线的解析式.24.(10分)(1)计算:﹣|﹣3|+cos60°;(2)化简:25.(12分)学校实施新课程改革以来,学生的学习能力有了很大提高.王老师为进一步了解本班学生自主学习、合作交流的现状,对该班部分学生进行调查,把调查结果分成四类(A:特别好,B:好,C:一般,D:较差)后,再将调查结果绘制成两幅不完整的统计图(如图1,2).请根据统计图解答下列问题:(1)本次调查中,王老师一共调查了名学生;(2)将条形统计图补充完整;(3)为了共同进步,王老师从被调查的A类和D类学生中分别选取一名学生进行“兵教兵”互助学习,请用列表或画树状图的方法求出恰好选中一名男生和一名女生的概率.26.小丹要测量灯塔市葛西河生态公园里被湖水隔开的两个凉亭和之间的距离,她在处测得凉亭在的南偏东方向,她从处出发向南偏东方向走了米到达处,测得凉亭在的东北方向.(1)求的度数;(2)求两个凉亭和之间的距离(结果保留根号).
参考答案一、选择题(每题4分,共48分)1、D【分析】利用勾股定理即可求得BC的长,然后根据正切的定义即可求解.【详解】根据勾股定理可得:BC=∴tanA=.故选:D.【点睛】本题考查了勾股定理和三角函数的定义,正确理解三角函数的定义是关键.2、B【分析】根据菱形的对角线互相垂直平分求出OA、OB的长,再利用勾股定理列式求出边长AB,然后根据菱形的周长公式列式进行计算即可得解.【详解】解:如图,∵菱形的两条对角线的长是6cm和8cm,∴OA=×80=40cm,OB=×60=30cm,又∵菱形的对角线AC⊥BD,∴AB==50cm,∴这个菱形的边长是50cm.故选B.【点睛】本题考查了菱形的性质,勾股定理的应用,主要利用了菱形的对角线互相垂直平分的性质.3、C【分析】抛物线y=1x1绕原点旋转180°,即抛物线上的点(x,y)变为(-x,-y),代入可得抛物线方程,然后根据左加右减的规律即可得出结论.【详解】解:∵把抛物线y=1x1绕原点旋转180°,∴新抛物线解析式为:y=﹣1x1,∵再向右平移1个单位,向下平移1个单位,∴平移后抛物线的解析式为y=﹣1(x﹣1)1﹣1.故选:C.【点睛】本题考查了抛物线的平移变换规律,旋转变换规律,掌握抛物线的平移和旋转变换规律是解题的关键.4、D【分析】先由圆周角定理求出∠BOC的度数,再过点O作OD⊥BC于点D,由垂径定理可知CD=BC,∠DOC=∠BOC=×120°=60°,再由锐角三角函数的定义即可求出CD的长,进而可得出BC的长.【详解】解:∵∠BAC=60°,∴∠BOC=2∠BAC=2×60°=120°,过点O作OD⊥BC于点D,∵OD过圆心,∴CD=BC,∠DOC=∠BOC=×120°=60°,∴CD=OC×sin60°=2×=,∴BC=2CD=2.故选D.【点睛】本题考查的是圆周角定理、垂径定理及锐角三角函数的定义,根据题意作出辅助线,构造出直角三角形是解答此题的关键.5、A【分析】连接AN,CN,通过将每部分阴影的面积都转化为正方形ACFE的面积的,则答案可求.【详解】如图,连接AN,CN∵四边形ACFE是正方形∴∵,∴∴∴所以四边形BCDN的面积为正方形ACFE的面积的同理可得另一部分阴影的面积也是正方形ACFE的面积的∴两部分阴影部分的面积之和为正方形ACFE的面积的即故选A【点睛】本题主要考查不规则图形的面积,能够利用全等三角形对面积进行转化是解题的关键.6、B【分析】连接OE,OF,OG,根据切线性质证四边形ABCD为正方形,根据正方形性质和切线长性质可得DE=DF.【详解】连接OE,OF,OG,
∵AB,AD,DE都与圆O相切,
∴DE⊥OE,OG⊥AB,OF⊥AD,DF=DE,
∵四边形ABCD为正方形,
∴AB=AD=11,∠A=90°,
∴∠A=∠AGO=∠AFO=90°,
∵OF=OG=5,
∴四边形AFOG为正方形,
则DE=DF=11-5=6,
故选:B【点睛】考核知识点:切线和切线长定理.作辅助线,利用切线长性质求解是关键.7、A【解析】试题分析:根据科学记数法是把一个大于10的数表示成a×10n的形式(其中1≤a<10,n是正整数).确定a×10n(1≤|a|<10,n为整数),1100000有7位,所以可以确定n=7-1=6,再表示成a×10n的形式即可,即1100000=1.1×2.故答案选A.考点:科学记数法.8、D【分析】如图,作EH⊥AB于H,利用∠CBD的余弦可求出BD的长,利用∠ABD的余弦可求出AB的长,利用∠EBH的正弦和余弦可求出BH、HE的长,即可求出AH的长,利用勾股定理求出AE的长即可.【详解】如图,作EH⊥AB于H,在Rt△BDC中,BC=4,∠CBD=30°,∴BD=BC·cos30°=2,∵BD平分∠ABC,∠CBD=30°,∴∠ABD=30°,∠EBH=60°,在Rt△ABD中,∠ABD=30°,BD=2,∴AB=BD·cos30°=3,∵点E为BC中点,∴BE=EC=2,在Rt△BEH中,BH=BE·cos∠EBH=1,HE=EH·sin∠EBH=,∴AH=AB-BH=2,在Rt△AEH中,AE==,故选:D.【点睛】本题考查解直角三角形的应用,正确作出辅助线构建直角三角形并熟记三角函数的定义是解题关键.9、C【分析】因为顶点式y=a(x-h)2+k,其顶点坐标是(h,k),即可求出y=+2的顶点坐标.【详解】解:∵二次函数y=+2是顶点式,∴顶点坐标为:(−1,2);故选:C.【点睛】此题主要考查了利用二次函数顶点式求顶点坐标,此题型是中考中考查重点,同学们应熟练掌握.10、A【分析】确定点是否在抛物线上,分别把x=0,3,-2,代入中计算出对应的函数值,再进行判断即可.【详解】解:当时,,当时,,当时,,当时,,所以点在抛物线上.故选:.11、D【分析】根据题意,第二月获得利润万元,第三月获得利润万元,根据第一季度共获利145.6万元,即可得出关于的一元二次方程,此题得解.【详解】设二、三月份利润的月增长率为,则第二月获得利润万元,第三月获得利润万元,
依题意,得:.
故选:D.【点睛】本题考查了由实际问题抽象出一元二次方程,找准等量关系,正确列出一元二次方程是解题的关键.求平均变化率的方法为:若变化前的量为,变化后的量为,平均变化率为,则经过两次变化后的数量关系为.12、A【分析】由表知和,的值相等可以得出该二次函数的对称轴、二次函数的增减性、从而判定出以及函数的最值情况,再结合这些图像性质对不等式的解集和方程解的范围进行判断即可得出答案.【详解】解:∵当时,;当时,;当时,;当时,∴二次函数的对称轴为直线:∴结合表格数据有:当时,随的增大而增大;当时,随的增大而减小∴,即二次函数有最小值;∴①正确,④错误;∵由表格可知,不等式的解集是或∴②正确;∵由表格可知,方程的实数根分别位于和之间∴③正确.故选:A【点睛】本题主要考查二次函数的性质如:由对称性来求出对称轴、由增减性来判断的正负以及最值情况、利用图像特征来判断不等式的解集或方程解的范围等.二、填空题(每题4分,共24分)13、6【分析】连接OC,易知,由垂径定理可得,根据勾股定理可求出OE长.【详解】解:连接OCAB是⊙O的直径,AB=20弦CD⊥AB于E,CD=16在中,根据勾股定理得,即解得故答案为:6【点睛】本题主要考查了垂径定理,熟练利用垂径定理是解题的关键.垂径定理:垂直于弦的直径平分弦,并且平分弦所对的两条弧.14、3:2.【详解】解:
过F作FM⊥AB于M,过H作HN⊥BC于N,
则∠4=∠5=90°=∠AMF
∵四边形ABCD是矩形,
∴AD∥BC,AB∥CD,∠A=∠D=90°=∠AMF,
∴四边形AMFD是矩形,
∴FM∥AD,FM=AD=BC=3,
同理HN=AB=2,HN∥AB,
∴∠2=∠2,
∵HG⊥EF,
∴∠HOE=90°,
∴∠2+∠GHN=90°,
∵∠3+∠GHN=90°,
∴∠2=∠3=∠2,
即∠2=∠3,∠4=∠5,
∴△FME∽△HNG,∴EF:GH=AD:CD=3:2.
故答案为:3:2.考点:2.相似三角形的判定与性质;2.矩形的性质.15、【分析】由题意可得共有5种等可能的结果,其中无理数有:,共2种情况,则可利用概率公式求解.【详解】∵共有5种等可能的结果,无理数有:,共2种情况,∴取到无理数的概率是:.故答案为:.【点睛】此题考查了概率公式的应用与无理数的定义.此题比较简单,注意用到的知识点为:概率=所求情况数与总情况数之比.16、11【分析】先根据平行四边形的性质易得,根据相似三角形的判定可得△AFE∽△CFB,再根据相似三角形的性质得到△BFC的面积,,进而得到△AFB的面积,即可得△ABC的面积,再根据平行四边形的性质即可得解.【详解】解:∵AE:ED=1:2,∴AE:AD=1:3,∵AD=BC,∴AE:BC=1:3,∵AD∥BC,∴△AFE∽△CFB,∴,∴,∴S△BCF=9,∵,∴S△AFB=3,∴S△ACD=S△ABC=S△BCF+S△AFB=12,∴S四边形CDEF=S△ACD﹣S△AEF=12﹣1=11.故答案为11.【点睛】本题主要考查相似三角形的判定与性质,平行四边形的性质等,解此题的关键在于熟练掌握其知识点.17、30°【分析】根据AB是⊙O的直径可得出∠ACB=90°,再根据三角形内角和为180°以及∠OBC=60°,即可求出∠BAC的度数.【详解】∵AB是⊙O的直径,
∴∠ACB=90°,
又∵∠OBC=60°,
∴∠BAC=180°-∠ACB-∠ABC=30°.
故答案为:30°.【点睛】本题考查了圆周角定理以及角的计算,解题的关键是找出∠ACB=90°.本题属于基础题,难度不大,解决该题型题目时,找出直径所对的圆周角为90°是关键.18、【分析】利用绝对值的性质和特殊角的三角函数值计算即可.【详解】原式=.故答案为:.【点睛】本题主要考查绝对值的性质及特殊角的三角函数值,掌握绝对值的性质及特殊角的三角函数值是解题的关键.三、解答题(共78分)19、(1)0.6;(2)0.6;(3)盒子里黑颜色的球有20只,盒子白颜色的球有30只【分析】(1)观察表格找到逐渐稳定到的常数即可;(2)概率接近于(1)得到的频率;(3)白球个数=球的总数×得到的白球的概率,让球的总数减去白球的个数即为黑球的个数,问题得解.【详解】(1)∵摸到白球的频率约为0.6,∴当n很大时,摸到白球的频率将会接近0.6;故答案为:0.6;(2)∵摸到白球的频率为0.6,∴若从盒子里随机摸出一只球,则摸到白球的概率的估计值为0.6;(3)黑白球共有20只,白球为:50×0.6=30(只),黑球为:50﹣30=20(只).答:盒子里黑颜色的球有20只,盒子白颜色的球有30只.【点睛】考查利用频率估计概率.大量反复试验下频率稳定值即概率.用到的知识点为:部分的具体数目=总体数目×相应频率.20、(1)y=﹣2x+100;(2)当销售单价为28元或1元时,厂商每月获得的利润为41万元;(3)当销售单价为35元时,厂商每月获得的利润最大,最大利润为510万元.【分析】(1)直接利用待定系数法求出一次函数解析式;(2)根据利润=销售量×(销售单价﹣成本),代入代数式求出函数关系式,令利润z=41,求出x的值;(3)根据厂商每月的制造成本不超过51万元,以及成本价18元,得出销售单价的取值范围,进而得出最大利润.【详解】解:(1)由表格中数据可得:y与x之间的函数关系式为:y=kx+b,把(20,60),(25,50)代入得:解得:故y与x之间的函数关系式为:y=﹣2x+100;(2)设总利润为z,由题意得,z=y(x﹣18)=(﹣2x+100)(x﹣18)=﹣2x2+136x﹣1800;当z=41时,﹣2x2+136x﹣1800=41,解得:x1=28,x2=1.答:当销售单价为28元或1元时,厂商每月获得的利润为41万元;(3)∵厂商每月的制造成本不超过51万元,每件制造成本为18元,∴每月的生产量为:小于等于=30万件,y=﹣2x+100≤30,解得:x≥35,∵z=﹣2x2+136x﹣1800=﹣2(x﹣34)2+512,∴图象开口向下,对称轴右侧z随x的增大而减小,∴x=35时,z最大为:510万元.当销售单价为35元时,厂商每月获得的利润最大,最大利润为510万元.【点睛】本题考查的是二次函数在实际生活中的应用,关键是根据题意求出二次函数的解析式以及利用增减性求出最值.21、.【分析】首先根据Rt△ABD的三角函数求出BD的长度,然后得出CD的长度,根据勾股定理求出AC的长度,从而得出∠C的正弦值.【详解】∵在直角△ABD中,tan∠BAD=,∴BD=AD•tan∠BAD=12×=9,∴CD=BC-BD=14-9=5,∴AC==13,∴sinC=.【点睛】本题考查了解直角三角形中三角函数的应用,要熟练掌握好边角之间的关系.22、(1)∠DAF=36°;(2)证明见解析;(3)证明见解析.【解析】(1)求出∠ABC、∠ABD、∠CBD的度数,求出∠D度数,根据三角形内角和定理求出∠BAF和∠BAD度数,即可求出答案;(2)求出△AEF∽△DEA,根据相似三角形的性质得出即可;(3)连接AO,求出∠OAD=90°即可.【详解】(1)∵AD∥BC,∴∠D=∠CBD,∵AB=AC,∠BAC=36°,∴∠ABC=∠ACB=×(180°﹣∠BAC)=72°,∴∠AFB=∠ACB=72°,∵BD平分∠ABC,∴∠ABD=∠CBD=∠ABC=×72°=36°,∴∠D=∠CBD=36°,∴∠BAD=180°﹣∠D﹣∠ABD=180°﹣36°﹣36°=108°,∠BAF=180°﹣∠ABF﹣∠AFB=180°﹣36°﹣72°=72°,∴∠DAF=∠DAB﹣∠FAB=108°﹣72°=36°;(2)证明:∵∠CBD=36°,∠FAC=∠CBD,∴∠FAC=36°=∠D,∵∠AED=∠AEF,∴△AEF∽△DEA,∴,∴AE2=EF×ED;(3)证明:连接OA、OF,∵∠ABF=36°,∴∠AOF=2∠ABF=72°,∵OA=OF,∴∠OAF=∠OFA=×(180°﹣∠AOF)=54°,由(1)知∠DAF=36°,∴∠DAO=36°+54°=90°,即OA⊥AD,∵OA为半径,∴AD是⊙O的切线.【点睛】本题考查了切线的判定,圆周角定理,三角形内角和定理,等腰三角形的性质等知识点,能综合运用定理进行推理是解此题的关键.23、y=1(x﹣1)1+1.【分析】根据题意设抛物线解析式为y=a(x﹣1)1+1,代入(3,10)求解即可.【详解】解:根据题意设抛物线解析式为y=a(x﹣1)1+1,把(3,10)代入得a(3﹣1)1+1=10,解得a=1,所以抛物线解析式为y=1(x﹣1)1+1.【点睛】本题考查了抛物线的问题,掌握抛物线的性质以及解析法、待定系数法是解题的关键.24、(1);(2)【分析】(1)分别计算平方根、绝对值、特殊角的三角函数值,然后根据实数的运算法则
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 机械手课程设计
- 机械工程系课程设计
- 机械安全工程课程设计
- 机械发酵罐课程设计
- 九年级化学上册 第四单元 自然界的水 4.1 爱护水资源教案1 新人教版
- 机械制造蜗杆轴课程设计
- 机械制造手柄套课程设计
- 机械创新技术课程设计
- 机械储能课程设计
- 2024北京平安普惠物业服务合同
- 2024-2025学年第一学期初二物理期中考试卷
- 统编版2024-2025学年四年级语文上册期中素养测评基础卷 (含答案)
- 苏教版九年级上册劳动技术+第21课+垃圾分类与资源回收【课件】
- DB11T 1359-2016 平原生态公益林养护技术导则
- 江苏省南京市六校联考2024-2025学年高一上学期期中考试语文试题(无答案)
- 预防校园欺凌主题班会课件(共36张课件)
- 公关服务合同
- 芯片基础知识单选题100道及答案解析
- 江苏省苏州市2024-2025学年七年级上学期期中数学摸底调研卷
- GB/T 44352-2024燃油蒸发排放系统用活性炭通用要求
- 2024山东济南轨道交通集团限公司招聘49人高频难、易错点500题模拟试题附带答案详解
评论
0/150
提交评论