版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年九上数学期末模拟试卷请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题(每小题3分,共30分)1.如果两个相似三角形对应边之比是,那么它们的对应中线之比是()A.1:3 B.1:4 C.1:6 D.1:92.如图,在矩形ABCD中,AB=3,BC=6,若点E,F分别在AB,CD上,且BE=2AE,DF=2FC,G,H分别是AC的三等分点,则四边形EHFG的面积为()A.1 B. C.2 D.43.如图,DE是的中位线,则与的面积的比是A.1:2B.1:3C.1:4D.1:94.下列四个三角形,与左图中的三角形相似的是().A. B. C. D.5.方程x2﹣3x=0的根是()A.x=0 B.x=3 C., D.,6.已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,有下列5个结论:①abc>0;②b<a+c;③4a+2b+c>0;④2c<3b;⑤a+b>m(am+b)(m≠1的实数).其中正确的结论有()A.2个 B.3个 C.4个 D.5个7.如图,,相交于点,.若,,则与的面积之比为()A. B. C. D.8.如图,AB是半径为1的⊙O的直径,点C在⊙O上,∠CAB=30°,D为劣弧CB的中点,点P是直径AB上一个动点,则PC+PD的最小值为()A.1 B.2 C. D.9.关于的方程的根的情况,正确的是().A.有两个不相等的实数根 B.有两个相等的实数根C.只有一个实数根 D.没有实数根10.如图,从点看一山坡上的电线杆,观测点的仰角是45°,向前走到达点,测得顶端点和杆底端点的仰角分别是60°和30°,则该电线杆的高度()A. B. C. D.二、填空题(每小题3分,共24分)11.如图,⊙O经过A,B,C三点,PA,PB分别与⊙O相切于A,B点,∠P=46°,则∠C=_____.12.如图,抛物线(是常数,),与轴交于两点,顶点的坐标是,给出下列四个结论:①;②若,,在抛物线上,则;③若关于的方程有实数根,则;④,其中正确的结论是__________.(填序号)13.若,则=___________.14.已知A(0,3),B(2,3)是抛物线上两点,该抛物线的顶点坐标是_________.15.如图,已知⊙P的半径为4,圆心P在抛物线y=x2﹣2x﹣3上运动,当⊙P与x轴相切时,则圆心P的坐标为_____.16.如图,在平面直角坐标系中,已知函数和,点为轴正半轴上一点,为轴上一点,过作轴的垂线分别交,的图象于,两点,连接,,则的面积为_________.17.二次函数y=a(x+m)2+n的图象如图,则一次函数y=mx+n的图象不经过第_____象限.18.如图,的顶点和分别在轴、轴的正半轴上,且轴,点,将以点为旋转中心顺时针方向旋转得到,恰好有一反比例函数图象恰好过点,则的值为___________.三、解答题(共66分)19.(10分)已知:如图,在△ABC中,AB=AC,以AB为直径的⊙O交BC于点D,过点D作DE⊥AC于点E.(1)求证:DE是⊙O的切线.(2)若⊙O的半径为3cm,∠C=30°,求图中阴影部分的面积.20.(6分)某水果经销商到水果种植基地采购葡萄,经销商一次性采购葡萄的采购单价(元/千克)与采购量(千克)之间的函数关系图象如图中折线所示(不包括端点).(1)当时,写出与之间的函数关系式;(2)葡萄的种植成本为8元/千克,某经销商一次性采购葡萄的采购量不超过1000千克,当采购量是多少时,水果种植基地获利最大,最大利润是多少元?21.(6分)如图,AB是⊙O的直径,⊙O过AC的中点D,DE切⊙O于点D,交BC于E.(1)求证DE⊥BC;(2)若⊙O的半径为5,BE=2,求DE的长度.22.(8分)△ABC中,AB=AC,D为BC的中点,以D为顶点作∠MDN=∠B,(1)如图(1)当射线DN经过点A时,DM交AC边于点E,不添加辅助线,写出图中所有与△ADE相似的三角形.(2)如图(2),将∠MDN绕点D沿逆时针方向旋转,DM,DN分别交线段AC,AB于E,F点(点E与点A不重合),不添加辅助线,写出图中所有的相似三角形,并证明你的结论.(3)在图(2)中,若AB=AC=10,BC=12,当△DEF的面积等于△ABC的面积的时,求线段EF的长.23.(8分)如图,为了测量山坡上一棵树PQ的高度,小明在点A处利用测角仪测得树顶P的仰角为450,然后他沿着正对树PQ的方向前进10m到达B点处,此时测得树顶P和树底Q的仰角分别是600和300,设PQ垂直于AB,且垂足为C.(1)求∠BPQ的度数;(2)求树PQ的高度(结果精确到0.1m,)24.(8分)如图,在Rt△ABC中,∠ACB=90°,∠ABC=30°,AC=10cm,P为BC的中点,动点Q从点P出发,沿射线PC方向以cm/s的速度运动,以P为圆心,PQ长为半径作圆.设点Q运动的时间为t秒.(1)当t=2.5s时,判断直线AB与⊙P的位置关系,并说明理由.(2)已知⊙O为Rt△ABC的外接圆,若⊙P与⊙O相切,求t的值.25.(10分)(1)计算:;(2)解方程:.26.(10分)某学校为了了解名初中毕业生体育考试成绩的情况(满分分,得分为整数),从中随机抽取了部分学生的体育考试成绩,制成如下图所示的频数分布直方图.已知成绩在这一组的频率为.请回答下列问题:(1)在这个调查中,样本容量是______________;平均成绩是_________________;(2)请补全成绩在这一组的频数分布直方图;(3)若经过两年的练习,该校的体育平均成绩提高到了分,求该校学生体育成绩的年平均增长率.
参考答案一、选择题(每小题3分,共30分)1、A【解析】∵两个相似三角形对应边之比是1:3,∴它们的对应中线之比为1:3.故选A.点睛:本题考查相似三角形的性质,相似三角形的对应边、对应周长,对应高、中线、角平分线的比,都等于相似比,掌握相似三角形的性质及灵活运用它是解题的关键.2、C【分析】如图,延长FH交AB于点M,由BE=2AE,DF=2FC,G、H分别是AC的三等分点,证明EG//BC,FH//AD,进而证明△AEG∽△ABC,△CFH∽△CAD,进而证明四边形EHFG为平行四边形,再根据平行四边形的面积公式求解即可.【详解】如图,延长FH交AB于点M,∵BE=2AE,DF=2FC,AB=AE+BE,CD=CF+DF,∴AE:AB=1:3,CF:CD=1:3,又∵G、H分别是AC的三等分点,∴AG:AC=CH:AC=1:3,∴AE:AB=AG:AC,CF:CD=CH:CA,∴EG//BC,FH//AD,∴△AEG∽△ABC,△CFH∽△CDA,BM:AB=CF:CD=1:3,∠EMH=∠B,∴EG:BC=AE:AB=1:3,HF:AD=CF:CD=1:3,∵四边形ABCD是矩形,AB=3,BC=6,∴CD=AB=3,AD=BC=6,∠B=90°,∴AE=1,EG=2,CF=1,HF=2,BM=1,∴EM=3-1-1=1,EG=FH,∴EGFH,∴四边形EHFG为平行四边形,∴S四边形EHFG=2×1=2,故选C.【点睛】本题考查了矩形的性质,相似三角形的判定与性质,平行四边形的判定与性质,熟练掌握和灵活运用相关内容是解题的关键.3、C【分析】由中位线可知DE∥BC,且DE=BC;可得△ADE∽△ABC,相似比为1:2;根据相似三角形的面积比是相似比的平方,即得结果.【详解】解:∵DE是△ABC的中位线,∴DE∥BC,且DE=BC,∴△ADE∽△ABC,相似比为1:2,∵相似三角形的面积比是相似比的平方,∴△ADE与△ABC的面积的比为1:4.故选C.【点睛】本题要熟悉中位线的性质及相似三角形的判定及性质,牢记相似三角形的面积比是相似比的平方.4、B【分析】本题主要应用两三角形相似的判定定理,三边对应成比例,做题即可.【详解】解:设单位正方形的边长为1,给出的三角形三边长分别为,,.
A、三角形三边分别是2,,3,与给出的三角形的各边不成比例,故A选项错误;
B、三角形三边2,4,,与给出的三角形的各边成比例,故B选项正确;C、三角形三边2,3,,与给出的三角形的各边不成比例,故C选项错误;D、三角形三边,,4,与给出的三角形的各边不成正比例,故D选项错误.
故选:B.【点睛】此题考查了相似三角形的判定,注意三边对应成比例的两三角形相似.5、D【分析】先将方程左边提公因式x,解方程即可得答案.【详解】x2﹣3x=0,x(x﹣3)=0,x1=0,x2=3,故选:D.【点睛】本题考查解一元二次方程,解一元二次方程的常用方法有:配方法、直接开平方法、公式法、因式分解法等,熟练掌握并灵活运用适当的方法是解题关键.6、A【分析】观察图象:开口向下得到a<0;对称轴在y轴的右侧得到a、b异号,则b>0;抛物线与y轴的交点在x轴的上方得到c>0,所以abc<0;当x=﹣1时图象在x轴上得到y=a﹣b+c=0,即a+c=b;对称轴为直线x=1,可得x=2时图象在x轴上方,则y=4a+2b+c>0;利用对称轴x=﹣=1得到a=﹣b,而a﹣b+c<0,则﹣b﹣b+c<0,所以2c<3b;开口向下,当x=1,y有最大值a+b+c,得到a+b+c>am2+bm+c,即a+b>m(am+b)(m≠1).【详解】解:开口向下,a<0;对称轴在y轴的右侧,a、b异号,则b>0;抛物线与y轴的交点在x轴的上方,c>0,则abc<0,所以①不正确;当x=﹣1时图象在x轴上,则y=a﹣b+c=0,即a+c=b,所以②不正确;对称轴为直线x=1,则x=2时图象在x轴上方,则y=4a+2b+c>0,所以③正确;x=﹣=1,则a=﹣b,而a﹣b+c=0,则﹣b﹣b+c=0,2c=3b,所以④不正确;开口向下,当x=1,y有最大值a+b+c;当x=m(m≠1)时,y=am2+bm+c,则a+b+c>am2+bm+c,即a+b>m(am+b)(m≠1),所以⑤正确.故选:A.【点睛】本题考查了二次函数图象与系数的关系:对于二次函数y=ax2+bx+c(a≠0)的图象,当a>0,开口向上,函数有最小值,a<0,开口向下,函数有最大值;对称轴为直线x=,a与b同号,对称轴在y轴的左侧,a与b异号,对称轴在y轴的右侧;当c>0,抛物线与y轴的交点在x轴的上方;当△=b2-4ac>0,抛物线与x轴有两个交点.7、B【分析】先证明两三角形相似,再利用面积比是相似比的平方即可解出.【详解】∵AB∥CD,∴∠A=∠D,∠B=∠C,∴△ABO∽△DCO,∵AB=1,CD=2,∴△AOB和△DCO相似比为:1:2.∴△AOB和△DCO面积比为:1:4.故选B.【点睛】本题考查相似三角形的面积比,关键在于牢记面积比和相似比的关系.8、C【分析】作D点关于AB的对称点E,连接OC.OE、CE,CE交AB于P',如图,利用对称的性质得到P'E=P'D,,再根据两点之间线段最短判断点P点在P'时,PC+PD的值最小,接着根据圆周角定理得到∠BOC=60°,∠BOE=30°,然后通过证明△COE为等腰直角三角形得到CE的长即可.【详解】作D点关于AB的对称点E,连接OC、OE、CE,CE交AB于P',如图,∵点D与点E关于AB对称,∴P'E=P'D,,∴P'C+P'D=P'C+P'E=CE,∴点P点在P'时,PC+PD的值最小,最小值为CE的长度.∵∠BOC=2∠CAB=2×30°=60°,而D为的中点,∴∠BOE∠BOC=30°,∴∠COE=60°+30°=90°,∴△COE为等腰直角三角形,∴CEOC,∴PC+PD的最小值为.故选:C.【点睛】本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.9、A【分析】根据一元二次方程根的判别式,即可得到方程根的情况.【详解】解:∵,∴,∴原方程有两个不相等的实数根;故选择:A.【点睛】本题考查了一元二次方程根的判别式,解题的关键是熟练掌握根的判别式.10、A【分析】延长PQ交直线AB于点E,设PE=x米,在直角△APE和直角△BPE中,根据三角函数利用x表示出AE和BE,根据AB=AE-BE即可列出方程求得x的值,再在直角△BQE中利用三角函数求得QE的长,则PQ的长度即可求解.【详解】解:延长PQ交直线AB于点E,设PE=x.
在直角△APE中,∠PAE=45°,
则AE=PE=x;
∵∠PBE=60°
∴∠BPE=30°
在直角△BPE中,,∵AB=AE-BE=6,则解得:∴在直角△BEQ中,故选:A【点睛】本题考查解直角三角形的应用-仰角俯角问题,解答本题的关键是明确题意,利用锐角三角函数和数形结合的思想解答.二、填空题(每小题3分,共24分)11、67°【分析】根据切线的性质定理可得到∠OAP=∠OBP=90°,再根据四边形的内角和求出∠AOB,然后根据圆周角定理解答.【详解】解:∵PA,PB分别与⊙O相切于A,B两点,∴∠OAP=90°,∠OBP=90°,∴∠AOB=360°﹣90°﹣90°﹣46°=134°,∴∠C=∠AOB=67°,故答案为:67°.【点睛】本题考查了圆的切线的性质、四边形的内角和和圆周角定理,属于常见题型,熟练掌握上述知识是解题关键.12、①②④【分析】根据二次函数的图象和性质逐一对选项进行分析即可.【详解】①∵∴即,故①正确;②由图象可知,若,,在抛物线上,则,故②正确;③∵抛物线与直线有交点时,即有解时,要求所以若关于的方程有实数根,则,故③错误;④当时,∵∴,故④正确.故答案为①②④【点睛】本题主要考查二次函数的图象和性质,掌握二次函数的图象和性质是解题的关键.13、【分析】根据题干信息,利用已知得出a=b,进而代入代数式求出答案即可.【详解】解:∵,∴a=b,∴=.故答案为:.【点睛】本题主要考查比例的性质,正确得出a=b,并利用代入代数式求值是解题关键.14、(1,4).【解析】试题分析:把A(0,3),B(2,3)代入抛物线可得b=2,c=3,所以=,即可得该抛物线的顶点坐标是(1,4).考点:抛物线的顶点.15、(1+2,4),(1﹣2,4),(1,﹣4)【分析】根据已知⊙P的半径为4和⊙P与x轴相切得出P点的纵坐标,进而得出其横坐标,即可得出答案.【详解】解:当半径为4的⊙P与x轴相切时,此时P点纵坐标为4或﹣4,∴当y=4时,4=x2﹣2x﹣3,解得:x1=1+2,x2=1﹣2,∴此时P点坐标为:(1+2,4),(1﹣2,4),当y=﹣4时,﹣4=x2﹣2x﹣3,解得:x1=x2=1,∴此时P点坐标为:(1,﹣4).综上所述:P点坐标为:(1+2,4),(1﹣2,4),(1,﹣4).故答案为:(1+2,4),(1﹣2,4),(1,﹣4).【点睛】此题是二次函数综合和切线的性质的综合题,解答时通过数形结合以得到P点纵坐标是解题关键。16、1【分析】根据题意设点,则,再根据三角形面积公式求解即可.【详解】由题意得,设点,则∴故答案为:1.【点睛】本题考查了反比例函数的几何问题,掌握反比例函数的性质、三角形面积公式是解题的关键.17、一【分析】由二次函数解析式表示出顶点坐标,根据图形得到顶点在第四象限,求出m与n的正负,即可作出判断.【详解】根据题意得:抛物线的顶点坐标为(﹣m,n),且在第四象限,∴﹣m>0,n<0,即m<0,n<0,则一次函数y=mx+n不经过第一象限.故答案为:一.【点睛】此题考查了二次函数与一次函数图象与系数的关系,熟练掌握二次函数及一次函数的图象与性质是解本题的关键.18、-24【分析】先根据图形旋转的性质得BD=BA,∠DBA=90°,再得出轴,然后求得点D的坐标,最后利用待定系数法求解反比例函数的解析式即可.【详解】设DB与轴的交点为F,如图所示:∵以点为旋转中心顺时针方向旋转得到,点,轴∴BD=BA=6,∠DBA=90°∴轴∴DF=6-2=4∴点D的坐标为(-4,6)∵反比例函数图象恰好过点∴,解得:故填:【点睛】本题主要考查坐标与图形变化-旋转、待定系数法求反比例函数解析式,根据图形旋转的性质得出点D的坐标是关键.三、解答题(共66分)19、(1)见解析;(1)(3π﹣)cm1【分析】(1)由等腰三角形的性质证出∠ODB=∠C.得出OD∥AC.由已知条件证出DE⊥OD,即可得出结论;(1)由垂径定理求出OF,由勾股定理得出DF,求出BD,得出△BOD的面积,再求出扇形BOD的面积,即可得出结果.【详解】(1)连接OD,如图1所示:∵OD=OB,∴∠B=∠ODB.∵AB=AC,∴∠B=∠C.∴∠ODB=∠C.∴OD∥AC.∵DE⊥AC,∴DE⊥OD,∴DE是⊙O的切线.(1)过O作OF⊥BD于F,如图1所示:∵∠C=30°,AB=AC,OB=OD,∴∠OBD=∠ODB=∠C=30°,∴∠BOD=110°,在Rt△DFO中,∠FDO=30°,∴OF=OD=cm,∴DF==cm,∴BD=1DF=3cm,∴S△BOD=×BD×OF=×3×=cm1,S扇形BOD==3πcm1,∴S阴=S扇形BOD﹣S△BOD==(3π﹣)cm1.【点睛】本题考查了切线的判定、等腰三角形的性质、平行线的判定与性质、勾股定理、三角形和扇形面积的计算等知识;熟练掌握切线的判定,由垂径定理和勾股定理求出OF和DF是解决问题(1)的关键.20、(1);(2)一次性采购量为800千克时,蔬菜种植基地能获得最大利润为12800元.【分析】(1)根据函数图象中的点B和点C可以求得当500<x≤1000时,y与x之间的函数关系式;(2)根据题意可以分为两种讨论,然后进行对比即可解答本题;【详解】解:(1)设当时,与之间的函数关系式为:,,解得.故与之间的函数关系式为:;(2)当采购量是千克时,蔬菜种植基地获利元,当时,,则当时,有最大值11000元,当时,,,故当时,有最大值为12800元,综上所述,一次性采购量为800千克时,蔬菜种植基地能获得最大利润为12800元;【点睛】本题主要考查了二次函数的应用,一元二次方程的应用,掌握二次函数的应用,一元二次方程的应用是解题的关键.21、(1)证明见解析;(2)DE=4【分析】(1)连接OD,DE是切线,则OD⊥DE,则OD是△ABC的中位线,可得OD∥BC,据此即可求证;(2)过B作OD的垂线,垂足为F,证明四边形DFBE为矩形,Rt△OFB中用勾股定理即可求得DE的长度.【详解】证明(1)连接OD∵DE切⊙O于点D∴OD⊥DE∴∠ODE=90°∵D是AC的中点,O是AB的中点∴OD是△ABCD的中位线∴OD∥BC∴∠DEC=90°∴DE⊥BC(2)过B作BF⊥OD∵BF⊥OD∴∠DFB=90°∴∠DFB=∠DEB=∠ODE=90°∴四边形DFBE为矩形∴DF=BE=2∴OF=OD-DF=5-2=3∴DE=BF=4【点睛】本题考查了圆的切线的性质、三角形中位线的判定和性质、矩形的判定和性质、直角三角形的性质,辅助线是关键.22、(1)△ABD,△ACD,△DCE(2)△BDF∽△CED∽△DEF,证明见解析;(3)4.【分析】(1)根据等腰三角形的性质以及相似三角形的判定得出△ADE∽△ABD∽△ACD∽△DCE,同理可得:△ADE∽△ACD.△ADE∽△DCE.(2)利用已知首先求出∠BFD=∠CDE,即可得出△BDF∽△CED,再利用相似三角形的性质得出,从而得出△BDF∽△CED∽△DEF.(3)利用△DEF的面积等于△ABC的面积的,求出DH的长,从而利用S△DEF的值求出EF即可【详解】解:(1)图(1)中与△ADE相似的有△ABD,△ACD,△DCE.(2)△BDF∽△CED∽△DEF,证明如下:∵∠B+∠BDF+∠BFD=30°,∠EDF+∠BDF+∠CDE=30°,又∵∠EDF=∠B,∴∠BFD=∠CDE.∵AB=AC,∴∠B=∠C.∴△BDF∽△CED.∴.∵BD=CD,∴,即.又∵∠C=∠EDF,∴△CED∽△DEF.∴△BDF∽△CED∽△DEF.(3)连接AD,过D点作DG⊥EF,DH⊥BF,垂足分别为G,H.∵AB=AC,D是BC的中点,∴AD⊥BC,BD=BC=1.在Rt△ABD中,AD2=AB2﹣BD2,即AD2=102﹣3,∴AD=2.∴S△ABC=•BC•AD=×3×2=42,S△DEF=S△ABC=×42=3.又∵•AD•BD=•AB•DH,∴.∵△BDF∽△DEF,∴∠DFB=∠EFD.∵DH⊥BF,DG⊥EF,∴∠DHF=∠DGF.又∵DF=DF,∴△DHF≌△DGF(AAS).∴DH=DG=.∵S△DEF=·EF·DG=·EF·=3,∴EF=4.【点睛】本题考查了和相似有关的综合性题目,用到的知识点有三角形相似的判定和性质、等腰三角形的性质以及勾股定理的运用,灵活运用相似三角形的判定定理和性质定理是解题的关键,解答时,要仔细观察图形、选择合适的判定方法,注意数形结合思想的运用.23、(1)∠BPQ=30°;(2)树PQ的高度约为15.8m.【分析】(1)根据题意题可得:∠A=45°,∠PBC=60°,∠QBC=30°,AB=10m,在Rt△PBC中,根据三角形内角和定理即可得∠BPQ度数;(2)设CQ=x,在Rt△QBC中,根据30度所对的直角边等于斜边的一半得BQ=2x,由勾股定理得BC=x;根据角的计算得∠PBQ=∠BPQ=30°,由等角对等边得PQ=BQ=2x,用含x的代数式表示PC=PQ+QC=3x,AC=AB+BC=10+x,又∠A=45°,得出AC=PC,建立方程解之求出x,再将x值代入PQ代数式求之即可.【详解】(1)依题可得:∠A=45°,∠PBC=60°,∠QBC=30°,AB=10m,在Rt△PBC中,∵∠PBC=60°,∠PCB=90°,∴∠BPQ=30°;(2)设CQ=x,在Rt△QBC中,∵∠QBC=30°,∠QCB=90°,∴BQ=2x,BC=x,又∵∠PBC=60°,∠QBC=30°,∴∠PBQ=30°,由(1)知∠BPQ=30°,∴PQ=BQ=2x,∴PC=PQ+QC=3x,AC=AB+BC=10+x,又∵∠A=45°,∴AC=PC,即3x=10+x,解得:x=,∴PQ=2x=≈15.8(m),答:树PQ的高度约为15.8m.【点睛】本题考查了解直角三角形的应用,涉及到三角形的内角和定理、等腰三角形的性质、含30度角的直角三角形的性质等,准确识图是解题
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年CT技术服务购买合同
- 法律咨询服务推广方案
- 2024年合同延续协议样本
- 学校装修供货合同的法律要点
- 船舶行业阀门安装方案
- 在线文化课程开发方案
- 2024年创新合作:半成品买卖合同协议
- 展会灯箱展示方案及服务
- 2024年一手房买卖抵押合同范本
- 2024年云计算数据中心基础设施建设与运营合同
- 2024秋期国家开放大学《政治学原理》一平台在线形考(形考任务三)试题及答案
- 化工企业中试阶段及试生产期间的产品能否对外销售
- 2024年福建闽投永安抽水蓄能有限公司招聘笔试参考题库附带答案详解
- 成长生涯发展展示
- 求职能力展示
- 基于PLC的热水箱恒温控制系统
- 城轨行车组织-工程列车的开行
- 国培教师个人成长案例3000字
- 中国马克思主义与当代思考题(附答案)
- 火灾逃生与自救
- 金属风管支架重量计算表
评论
0/150
提交评论