分布列与其他知识综合运用 新高考 数学 一轮复习专项提升 精讲精练_第1页
分布列与其他知识综合运用 新高考 数学 一轮复习专项提升 精讲精练_第2页
分布列与其他知识综合运用 新高考 数学 一轮复习专项提升 精讲精练_第3页
已阅读5页,还剩9页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

8.6分布列与其他知识综合运用(精讲)(提升版)考点呈现考点呈现例题剖析例题剖析考点一与数列综合【例1】(2022·福建·三明一中模拟预测)(多选)已知红箱内有6个红球、3个白球,白箱内有3个红球、6个白球,所有小球大小、形状完全相同.第一次从红箱内取出一球后再放回去,第二次从与第一次取出的球颜色相同的箱子内取出一球,然后再放回去,依此类推,第次从与第k次取出的球颜色相同的箱子内取出一球,然后再放回去.记第次取出的球是红球的概率为,则下列说法正确的是(

)A. B.C.第5次取出的球是红球的概率为 D.前3次取球恰有2次取到红球的概率是【一隅三反】1.(2022·广东·高三阶段练习)足球是一项大众喜爱的运动.2022卡塔尔世界杯揭幕战将在2022年11月21日打响,决赛定于12月18日晚进行,全程为期28天.(1)为了解喜爱足球运动是否与性别有关,随机抽取了男性和女性各100名观众进行调查,得到22列联表如下:喜爱足球运动不喜爱足球运动合计男性6040100女性2080100合计80120200依据小概率值a=0.001的独立性检验,能否认为喜爱足球运动与性别有关?(2)校足球队中的甲、乙、丙、丁四名球员将进行传球训练,第1次由甲将球传出,每次传球时,传球者都等可能的将球传给另外三个人中的任何一人,如此不停地传下去,且假定每次传球都能被接到.记开始传球的人为第1次触球者,第次触球者是甲的概率记为,即.(i)求(直接写出结果即可);(ii)证明:数列为等比数列,并判断第19次与第20次触球者是甲的概率的大小.2.(2022·四川绵阳·三模(文))随着科技进步,近来年,我国新能源汽车产业迅速发展.以下是中国汽车工业协会2022年2月公布的近六年我国新能源乘用车的年销售量数据:年份201620172018201920202021年份代码x123456新能源乘用车年销售y(万辆)5078126121137352(1)根据表中数据,求出y关于x的线性回归方程;(结果保留整数)(2)若用模型拟合y与x的关系,可得回归方程为,经计算该模型和第(1)问中模型的(为相关指数)分别为0.87和0.71,请分别用这两个模型,求2022年我国新能源乘用车的年销售量的预测值;(3)你认为(2)中用哪个模型得到的预测值更可靠?请说明理由.参考数据:设,其中.1444.788415.70380528参考公式:对于一组具有线性相关关系的数据,其回归直线的斜率和截距的最小二乘估计公式分别为,.3.(2022·重庆·二模)规定抽球试验规则如下:盒子中初始装有白球和红球各一个,每次有放回的任取一个,连续取两次,将以上过程记为一轮.如果每一轮取到的两个球都是白球,则记该轮为成功,否则记为失败.在抽取过程中,如果某一轮成功,则停止;否则,在盒子中再放入一个红球,然后接着进行下一轮抽球,如此不断继续下去,直至成功.(1)某人进行该抽球试验时,最多进行三轮,即使第三轮不成功,也停止抽球,记其进行抽球试验的轮次数为随机变量,求的分布列和数学期望;(2)为验证抽球试验成功的概率不超过,有1000名数学爱好者独立的进行该抽球试验,记表示成功时抽球试验的轮次数,表示对应的人数,部分统计数据如下:1234523298604020求关于的回归方程,并预测成功的总人数(精确到1);(3)证明:.附:经验回归方程系数:,;参考数据:,,(其中,)..考点二与函数结合【例2】(2022·西南名校模拟)某工厂为了提高某产品的生产质量引进了一条年产量为100万件的生产线.已知该产品的质量以某项指标值k为衡量标准,为估算其经济效益,该厂先进行了试生产,并从中随机抽取了100件该产品,统计了每个产品的质量指标值k,并分成以下5组,其统计结果如下表所示:质量指标值频数163040104试利用该样本的频率分布估计总体的概率分布,并解决下列问题:(注:每组数据取区间的中点值)(1)由频率分布表可认为,该产品的质量指标值k近似地服从正态分布,其中近似为样本平均数,近似为样本的标准差s,并已求得,记X表示某天从生产线上随机抽取的10件产品中质量指标值k在区间之外的个数,求及X的数学期望(精确到0.001);(2)已知每个产品的质量指标值k与利润y(单位:万元)的关系如下表所示质量指标值k利润yt假定该厂所生产的该产品都能销售出去,且这一年的总投资为500万元,问:该厂能否在一年之内通过销售该产品收回投资?试说明理由.参考数据:若随机变量,则,.【一隅三反】1.(2021高三上·威海期末)体检时,为了确定体检人是否患有某种疾病,需要对其血液采样进行化验,若结果呈阳性,则患有该疾病;若结果呈阴性,则未患有该疾病.对于份血液样本,有以下两种检验方式:一是逐份检验,则需检验次.二是混合检验,将份血液样本分别取样混合在一起,若检验结果为阴性,那么这份血液全为阴性,因而检验一次就够了﹔如果检验结果为阳性,为了明确这份血液究竟哪些为阳性,就需要对它们再次取样逐份检验,则份血液检验的次数共为次.已知每位体检人未患有该疾病的概率为,而且各体检人是否患该疾病相互独立.(1)若,求3位体检人的血液样本混合检验结果为阳性的概率;(2)某定点医院现取得6位体检人的血液样本,考虑以下两种检验方案:方案一:采用混合检验;方案二:平均分成两组,每组3位体检人血液样本采用混合检验.若检验次数的期望值越小,则方案越“优”.试问方案一、二哪个更“优”?请说明理由.2.(2022·临沂模拟)在疫情防控常态化的背景下,山东省政府各部门在保安全,保稳定的前提下有序恢复生产,生活和工作秩序,五一期间,文旅部门在落实防控举措的同时,推出了多款套票文旅产品,得到消费者的积极回应.下面是文旅部门在某地区推出六款不同价位的旅游套票,每款的套票价格x(单位:元)与购买人数y(单位:万人)的数据如下表:旅游类别城市展馆科技游乡村特色游齐鲁红色游登山套票游园套票观海套票套票价格x(元)394958677786购买数量y(万人)16.718.720.622.524.125.6在分析数据、描点绘图中,发现散点集中在一条直线附近,其中附:①可能用到的数据;.②对于一组数据,其回归直线ω=bv+(1)根据所给数据,求y关于x的回归方程;(2)按照文旅部门的指标测定,当购买数量y与套票价格x的比在区间上时,该套票受消费者的欢迎程度更高,可以被认定为“热门套票”,现有三位同学从以上六款旅游套票中,购买不同的三款各自旅游.记三人中购买“热门套票”的人数为X,求随机变量X的分布列和期望.3.(2022·湖北模拟)象棋属于二人对抗性游戏的一种,在中国有着悠久的历史,由于用具简单,趣味性强,成为流行极为广泛的棋艺活动.马在象棋中是至关重要的棋子,“马起盘格势,折冲千里余.江河不可障,飒沓入敌虚”将矩形棋盘视作坐标系,棋盘的左下角为坐标原点,马每一步从移动到或.(1)若棋盘的右上角为,马从处出发,等概率地向各个能到达(不离开棋盘)的方向移动,求其4步以内到达右上角的概率.(2)若棋盘的右上角为,马从处出发,每一步仅向方向移动,最终到达棋盘右上角,若选择每一条可行的道路是等概率的,求马停留在线段上次数的数学期望.考点三与导数综合【例3】(2022·云南·昆明一中高三开学考试)甲、乙两人参加一个游戏,该游戏设有奖金256元,谁先赢满5局,谁便赢得全部的奖金,已知每局游戏乙赢的概率为,甲赢的概率为,每局游戏相互独立,在乙赢了3局甲贏了1局的情况下,游戏设备出现了故障,游戏被迫终止,则奖金应该如何分配才为合理?有专家提出如下的奖金分配方案:如果出现无人先赢5局且游戏意外终止的情况,则甲、乙按照游戏再继续进行下去各自赢得全部奖金的概率之比分配奖金.(1)若,则乙应该得多少奖金;(2)记事件A为“游戏继续进行下去甲获得全部奖金”,试求当游戏继续进行下去,甲获得全部奖金的概率,并判断当时,事件A是否为小概率事件,并说明理由.(注:若随机事件发生的概率小于,则称随机事件为小概率事件)【一隅三反】1.(2022·佛山模拟)甲、乙两队进行一轮篮球比赛,比赛采用“5局3胜制”(即有一支球队先胜3局即获胜,比赛结束).在每一局比赛中,都不会出现平局,甲每局获胜的概率都为.(1)若,比赛结束时,设甲获胜局数为X,求其分布列和期望;(2)若整轮比赛下来,甲队只胜一场的概率为,求的最大值.2.(2022·湖南模拟)中国国家统计局2019年9月30日发布数据显示,2019年9月中国制造业采购经理指数为49.8%,反映出中国制造业扩张步伐有所加快.以新能源汽车、机器人、增材制造、医疗设备、高铁、电力装备、船舶、无人机等为代表的高端制造业突飞猛进,则进一步体现了中国制造目前的跨越式发展.已知某精密制造企业根据长期检测结果,得到生产的产品的质量差服从正态分布,并把质量差在内的产品称为优等品,质量差在内的产品称为一等品,优等品与一等品统称为正品,其余范围内的产品作为废品处理.现从该企业生产的正品中随机抽取1000件,测得产品质量差的样本数据统计如下:(1)根据大量的产品检测数据,检查样本数据的方差的近似值为100,用样本平均数作为的近似值,用样本标准差作为的估计值,记质量差,求该企业生产的产品为正品的概率P;(同一组中的数据用该组区间的中点值代表)(2)假如企业包装时要求把2件优等品和(,且)件一等品装在同一个箱子中,质检员从某箱子中摸出两件产品进行检验,若抽取到的两件产品等级相同则该箱产品记为,否则该箱产品记为B.①试用含的代数式表示某箱产品抽检被记为的概率;②设抽检5箱产品恰有3箱被记为的概率为,求当为何值时,取得最大值,并求出最大值.参考数据:若随机变量服从正态分布,则:,,.3.(2022·佛山模拟)甲、乙两队进行一轮篮球比赛,比赛采用“5局3胜制”(即有一支球队先胜3局即获胜,比赛结束).在每一局比赛中,都不会出现平局,甲每局获胜的概率都为.(1)若,比赛结束时,设甲获胜局数为X,求其分布列和期望;(2)若整轮比赛下来,甲队只胜一场的概率为,求的最大值.考点四与其他知识综合运用【例4】(2022·重庆模拟)在“十三五”期间,我国的扶贫工作进入了“精准扶贫”阶段,到2020年底,全国830个贫困县全部脱贫摘帽,最后4335万贫困人口全部脱贫,这是我国脱贫攻坚史上的一大壮举.重庆市奉节县作为国家贫困县之一,于2019年4月顺利脱贫摘帽,因地制宜发展特色产业,是奉节脱贫攻坚的重要抓手.奉节县规划发展了以高山烟叶、药材、反季节蔬菜;中山油橄榄、养殖;低山脐橙等为主的产业格局,各类特色农产品已经成为了当地村民的摇钱树.尤其是奉节脐橙,因“果皮中厚、脆而易剥,肉质细嫩化渣、无核少络,酸甜适度,汁多爽口,余味清香”而闻名.为了防止返贫,巩固脱贫攻坚成果,各职能部门对脐橙种植、销售、运输、改良等各方面给予大力支持.奉节县种植的某品种脐橙果实按果径X(单位:mm)的大小分级,其中为一级果,为特级果,一级果与特级果统称为优品.现采摘了一大批此品种脐橙果实,从中随机抽取1000个测量果径,得到频率分布直方图如下:参考数据:若随机变量X服从正态分布,则,,.(1)由频率分布直方图可认为,该品种脐橙果实的果径X服从正态分布,其中μ近似为样本平均数,近似为样本标准差s,已知样本的方差的近似值为100.若从这批脐橙果实中任取一个,求取到的果实为优品的概率(同一组中的数据用该组区间的中点值代表)(2)这批采摘的脐橙按2个特级果和n(,且)个一级果为一箱的规格进行包装,再经过质检方可进入市场.质检员质检时从每箱中随机取出两个果实进行检验,若取到的两个果实等级相同,则该箱脐橙记为“同”,否则该箱脐橙记为“异”.①试用含n的代数式表示抽检的某箱脐橙被记为“异”的概率p;②设抽检的5箱脐橙中恰有3箱被记为“异”的概率为,求函数的最大值,及取最大值时n的值.【一隅三反】1.(2022·联合模拟)在检测中为减少检测次数,我们常采取“合1检测法”,即将个人的样本合并检测,若为阴性,则该小组所有样本均末感染病毒;若为阳性,则还需对本组的每个人再做检测.现有人,已知其中有2人感染病毒.(1)若,并采取“20合1检测法”,求共检测25次的概率;(2)设采取“10合1检测法”的总检测次数为,采取“20合1检测法”的总检测次数为,若仅考虑总检测次数的期望值,当为多少时,采取“20合1检测法”更适宜?请说明理由.2.(2022·邵阳模拟)某跳绳训练队需对队员进行限时的跳绳达标测试.已知队员的测试分数y与跳绳个数x满足如下关系.测试规则:每位队员最多进行两次测试,每次限时1分钟,若第一次测完,测试成绩达到60分及以上,则以此次测试成绩作为该队员的成绩,无需再进行后续的测试,最多进行两次,根据以往的训练效果,教练记录了队员甲在一分钟内时测试的成绩,将数据按,,,分成4组,并整理得到如下频率分布直方图:(1)计算a值,并根据直方图计算队员甲在1分钟内跳绳个数的平均值;(同一组中的数据用该组区间中点值作为代表)

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论