版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年九上数学期末模拟试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题(每题4分,共48分)1.在△ABC中,若tanA=1,sinB=,你认为最确切的判断是()A.△ABC是等腰三角形B.△ABC是等腰直角三角形C.△ABC是直角三角形D.△ABC是等边三角形2.如图,已知矩形的面积是,它的对角线与双曲线图象交于点,且,则值是()A. B. C. D.3.二次函数中与的部分对应值如下表所示,则下列结论错误的是()-1013-1353A. B.当时,的值随值的增大而减小C.当时, D.3是方程的一个根4.如图,已知AC是⊙O的直径,点B在圆周上(不与A、C重合),点D在AC的延长线上,连接BD交⊙O于点E,若∠AOB=3∠ADB,则()A.DE=EB B.DE=EB C.DE=DO D.DE=OB5.4的平方根是()A.2 B.–2 C.±2 D.±6.如图,直线y=x+3与x、y轴分别交于A、B两点,则cos∠BAO的值是()A. B. C. D.7.如图,点A、B、C都在⊙O上,若∠AOC=140°,则∠B的度数是()A.70° B.80° C.110° D.140°8.关于x的一元二次方程(m-2)x2+(2m+1)x+m-2=0有两个不相等的正实数根,则m的取值范围是()A.m> B.m>且m≠2 C.-≤m≤2 D.<m<29.有下列四种说法:①半径确定了,圆就确定了;②直径是弦;③弦是直径;④半圆是弧,但弧不一定是半圆.其中,错误的说法有()A.1种 B.2种 C.3种 D.4种10.如图,在中,,将绕点旋转到'的位置,使得,则的大小为()A. B. C. D.11.(湖南省娄底市九年级中考一模数学试卷)将数字“6”旋转180°,得到数字“9”,将数字“9”旋转180°,得到数字“6”,现将数字“69”旋转180°,得到的数字是()A.96B.69C.66D.9912.已知线段c是线段a和b的比例中项,若a=1,b=2,则c=()A.1 B. C. D.二、填空题(每题4分,共24分)13.一元二次方程2x2+3x+1=0的两个根之和为__________.14.若<2,化简_____________15.如图,一辆小车沿着坡度为的斜坡从点A向上行驶了50米到点B处,则此时该小车离水平面的垂直高度为_____________.16.一个不透明的布袋里装有2个红球,4个白球和a个黄球,这些球除颜色外其余都相同,若从该布袋里任意摸出1个球是黄球的概率为0.4,则a=_____.17.已知点是线段的一个黄金分割点,且,,那么__________.18.若点P(m,-2)与点Q(3,n)关于原点对称,则=______.三、解答题(共78分)19.(8分)如图,已知抛物线经过、两点,与轴相交于点.(1)求抛物线的解析式;(2)点是对称轴上的一个动点,当的周长最小时,直接写出点的坐标和周长最小值;(3)点为抛物线上一点,若,求出此时点的坐标.20.(8分)随着通讯技术的迅猛发展,人与人之间的沟通方式更多样、便捷某校数学兴趣小组设计了“你最喜欢的沟通方式”调查问卷(每人必选且只选一种),在全校范围内随机调查了部分学生,将统计结果绘制了如下两幅不完整的统计图,请结合图中所给的信息解答下列问题:(1)这次统计共抽查了多少名学生?在扇形统计图中,表示""的扇形圆心角的度数是多少;(2)将条形统计图补充完整;(3)该校共有1500名学生,请估计该校最喜欢用“微信”进行沟通的学生大约有多少名?(4)某天甲、乙两名同学都想从“微信"、""、“电话"三种沟通方式中选一种方式与对方联系,请用列表或画树状图的方法求出甲、乙两名同学恰好选择同一种沟通方式的概率.21.(8分)伴随经济发展和生活水平的日益提高,水果超市如雨后春笋般兴起.万松园一水果超市从外地购进一种水果,其进货成本是每吨0.4万元,根据市场调查,这种水果在市场上的销售量y(吨)与销售价x(万元)之间的函数关系为y=-x+2.6(1)当每吨销售价为多少万元时,销售利润为0.96万元?(2)当每吨销售价为多少万元时利润最大?并求出最大利润是多少?22.(10分)如图,等腰Rt△BPQ的顶点P在正方形ABCD的对角线AC上(P与AC不重合),∠PBQ=90°,QP与BC交于E,QP延长线交AD于F,连CQ.(1)①求证:AP=CQ;②求证:(2)当时,求的值.23.(10分)如图,四边形中,,平分,点是延长线上一点,且.(1)证明:;(2)若与相交于点,,求的长.24.(10分)矩形OABC在直角坐标系中的位置如图所示,A、C两点的坐标分别为A(6,0)、C(0,3),直线y=x与BC边相交于D.(1)求点D的坐标:(2)若抛物线y=ax+bx经过D、A两点,试确定此抛物线的表达式:(3)P为x轴上方(2)题中的抛物线上一点,求△POA面积的最大值.25.(12分)如图,梯形ABCD中,,点在上,连与的延长线交于点G.(1)求证:;(2)当点F是BC的中点时,过F作交于点,若,求的长.26.如图,A为反比例函数y=(其中x>0)图象上的一点,在x轴正半轴上有一点B,OB=1.连接OA、AB,且OA=AB=2.(1)求k的值;(2)过点B作BC⊥OB,交反比例函数y=(x>0)的图象于点C.①连接AC,求△ABC的面积;②在图上连接OC交AB于点D,求的值.
参考答案一、选择题(每题4分,共48分)1、B【分析】先根据特殊角的三角函数值求出∠A,∠B的值,再根据三角形内角和定理求出∠C即可判断三角形的形状。【详解】∵tanA=1,sinB=,∴∠A=45°,∠B=45°.∴AC=BC又∵三角形内角和为180°,∴∠C=90°.∴△ABC是等腰直角三角形.故选:B.【点睛】本题考查了特殊角的三角函数值,解答此题的关键是熟记特殊角的三角函数值.需要注意等角对等边判定等腰三角形。2、D【分析】过点D作DE∥AB交AO于点E,通过平行线分线段成比例求出的长度,从而确定点D的坐标,代入到解析式中得到k的值,最后利用矩形的面积即可得出答案.【详解】过点D作DE∥AB交AO于点E∵DE∥AB∴∵∴∴∴∵点D在上∴∵∴故选D【点睛】本题主要考查平行线分线段成比例及反比例函数,掌握平行线分线段成比例是解题的关键.3、C【分析】根据表格中的数值计算出函数表达式,从而可判断A选项,利用对称轴公式可计算出对称轴,从而判断其增减性,再根据函数图象及表格中y=3时对应的x,可判断C选项,把对应参数值代入即可判断D选项.【详解】把(-1,-1),(0,3),(1,5)代入得,解得,∴,A.,故本选项正确;B.该函数对称轴为直线,且,函数图象开口向下,所以当时,y随x的增大而减小,故本选项正确;C.由表格可知,当x=0或x=3时,y=3,且函数图象开口向下,所以当y<3时,x<0或x>3,故本选项错误;D.方程为,把x=3代入得-9+6+3=0,所以本选项正确.故选:C.【点睛】本题考查了二次函数表达式求法,二次函数图象与系数的关系,二次函数的性质等知识,“待定系数法”是求函数表达式的常用方法,需熟练掌握.4、D【解析】解:连接EO.∴∠B=∠OEB,∵∠OEB=∠D+∠DOE,∠AOB=3∠D,∴∠B+∠D=3∠D,∴∠D+∠DOE+∠D=3∠D,∴∠DOE=∠D,∴ED=EO=OB,故选D.5、C【分析】根据正数的平方根的求解方法求解即可求得答案.【详解】∵(±1)1=4,
∴4的平方根是±1.
故选:C.6、A【解析】∵在中,当时,;当时,解得;∴点A、B的坐标分别为(-4,0)和(0,3),∴OA=4,OB=3,又∵∠AOB=90°,∴AB=,∴cos∠BAO=.故选A.7、C【解析】分析:作对的圆周角∠APC,如图,利用圆内接四边形的性质得到∠P=40°,然后根据圆周角定理求∠AOC的度数.详解:作对的圆周角∠APC,如图,∵∠P=∠AOC=×140°=70°∵∠P+∠B=180°,∴∠B=180°﹣70°=110°,故选:C.点睛:本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.8、D【解析】试题分析:根据题意得且△=,解得且,设方程的两根为a、b,则=,,而,∴,即,∴m的取值范围为.故选D.考点:1.根的判别式;2.一元二次方程的定义.9、B【分析】根据弦的定义、弧的定义、以及确定圆的条件即可解决.【详解】解:圆确定的条件是确定圆心与半径,是假命题,故此说法错误;直径是弦,直径是圆内最长的弦,是真命题,故此说法正确;弦是直径,只有过圆心的弦才是直径,是假命题,故此说法错误;④半圆是弧,但弧不一定是半圆,圆的任意一条直径的两个端点把圆分成两条弧,每一条弧都叫半圆,所以半圆是弧.但比半圆大的弧是优弧,比半圆小的弧是劣弧,不是所有的弧都是半圆,是真命题,故此说法正确.
其中错误说法的是①③两个.故选B.【点睛】本题考查弦与直径的区别,弧与半圆的区别,及确定圆的条件,不要将弦与直径、弧与半圆混淆.10、B【分析】由平行线的性质可得∠C'CA=∠CAB=64°,由折叠的性质可得AC=AC',∠BAB'=∠CAC',可得∠ACC'=∠C'CA=64°,由三角形内角和定理可求解.【详解】∵CC′∥AB,
∴∠C'CA=∠CAB=64°,
∵将△ABC绕点A旋转到△AB′C′的位置,
∴AC=AC',∠BAB'=∠CAC',
∴∠ACC'=∠C'CA=64°,
∴∠C'AC=180°−2×64°=52°,
故选:B.【点睛】本题考查旋转的性质,平行线的判定,等腰三角形的性质,灵活运用旋转的性质是本题的关键.11、B【解析】现将数字“69”旋转180°,得到的数字是:69,故选B.12、B【分析】根据线段比例中项的概念,可得a:c=c:b,可得c2=ab=2,故c的值可求,注意线段不能为负.【详解】解:∵线段c是a、b的比例中项,∴c2=ab=2,
解得c=±,
又∵线段是正数,∴c=.
故选:B.【点睛】本题考查了比例中项的概念,注意:求两个数的比例中项的时候,应开平方.求两条线段的比例中项的时候,负数应舍去.二、填空题(每题4分,共24分)13、-【解析】试题解析:由韦达定理可得:故答案为:点睛:一元二次方程根与系数的关系:14、2-x.【分析】直接利用二次根式的性质化简求出答案.【详解】解:∵x<2,∴x-2<0,故答案是:2-x.【点睛】此题主要考查了二次根式的性质与化简,正确把握二次根式的性质是解题关键.15、2【分析】设出垂直高度,表示出水平距离,利用勾股定理求解即可.【详解】设此时该小车离水平面的垂直高度为x米,则水平前进了x米.根据勾股定理可得:x2+(x)2=1.解得x=2.即此时该小车离水平面的垂直高度为2米.故答案为:2.【点睛】考查了解直角三角形的应用−坡度坡角问题,此题的关键是熟悉且会灵活应用公式:tan(坡度)=垂直高度÷水平宽度,综合利用了勾股定理.16、1【解析】根据黄球个数÷总球的个数=黄球的概率,列出算式,求出a的值即可.【详解】根据题意得:=0.1,解得:a=1,经检验,a=1是原分式方程的解,则a=1;故答案为1.【点睛】此题考查了概率公式的应用.用到的知识点为:概率=所求情况数与总情况数之比.17、【分析】根据黄金分割的概念得到,把代入计算即可.【详解】∵P是线段AB的黄金分割点,∴故答案为.【点睛】本题考查了黄金分割点的应用,理解黄金分割点的比例并会运算是解题的关键.18、-1【分析】根据坐标的对称性求出m,n的值,故可求解.【详解】依题意得m=-3,n=2∴=故填:-1.【点睛】此题主要考查代数式求值,解题的关键是熟知直角坐标系的坐标特点.三、解答题(共78分)19、(1);(2),;(3),,【分析】(1)把、代入抛物线即可求出b,c即可求解;(2)根据A,B关于对称轴对称,连接BC交对称轴于P点,即为所求,再求出坐标及的周长;(3)根据△QAB的底边为4,故三角形的高为4,令=4,求出对应的x即可求解.【详解】(1)把、代入抛物线得解得∴抛物线的解析式为:;(2)如图,连接BC交对称轴于P点,即为所求,∵∴C(0,-3),对称轴x=1设直线BC为y=kx+b,把,C(0,-3)代入y=kx+b求得k=1,b=-3,∴直线BC为y=x-3令x=1,得y=-2,∴P(1,-2),∴的周长=AC+AP+CP=AC+BC=+=;(3)∵△QAB的底边为AB=4,∴三角形的高为4,令=4,即解得x1=,x2=,x3=1故点的坐标为,,.【点睛】此题主要考查二次函数的图像与性质,解题的关键是熟知待定系数法与一次函数的求解.20、(1)100;108°;(2)详见解析;(3)600人;(4)【分析】(1)利用喜欢“电话”沟通的人数除以其所占调查总人数的百分率即可求出调查总人数,然后求出喜欢“QQ”沟通的人数占调查总人数的百分率,再乘360°即可求出结论;(2)用调查总人数×喜欢“短信”沟通的人数所占百分率即可求出喜欢“短信”沟通的人数,然后用调查总人数减去其余“电话”、“短信”、“QQ”和“其它”沟通的人数即可求出喜欢用“微信”沟通的人数,最后补全条形统计图即可;(3)先求出喜欢用“微信”沟通的人数占调查总人数的百分率,再乘1500即可;(4)根据题意,画出树状图,然后根据概率公式计算即可.【详解】解:(1)调查总人数为20÷20%=100人表示""的扇形圆心角的度数是30÷100×360°=108°(2)喜欢用“短信”沟通的人数为:100×5%=5人,喜欢用“微信”沟通的人数为:100-20-5-30-5=40人,补充条形统计图,如图所示:(3)喜欢用“微信”沟通所占百分比为:∴该校共有1500名学生,估计该校最喜欢用“微信”进行沟通的学生有:人.答:该校最喜欢用“微信”进行沟通的学生有600人.(4)列出树状图,如图所示,共有9种等可能的结果,其中两人恰好选中同一种沟通方式共有3种情况,所以甲、乙两名同学恰好选中同一种沟通方式的概率为:【点睛】此题考查的是条形统计图、扇形统计图和求概率问题,结合条形统计图和扇形统计图得出有用信息并掌握画树状图和概率公式求概率是解决此题的关键.21、(1)当每吨销售价为1万元或2万元时,销售利润为
0.96万元;(2)每吨销售价为1.5万元时,销售利润最大,最大利润是1.21万元.【分析】(1)由销售量y=-x+2.6,而每吨的利润为x-0.4,所以w=y(x-0.4);
(2)解出(2)中的函数是一个二次函数,对于二次函数取最值可使用配方法.【详解】解:(1)设销售利润为w万元,由题意可得:
w=(x-0.4)y=(x-0.4)(-x+2.6)=-x2+3x-1.04,
令w=0.96,则-x2+3x-1.04=0.96
解得x1=1,x2=2,
答:当每吨销售价为1万元或2万元时,销售利润为
0.96万元;
(2)w=-x2+3x-1.04=-(x-1.5)2+1.21,
当x=1.5时,w最大=1.21,
∴每吨销售价为1.5万元时,销售利润最大,最大利润是1.21万元.【点睛】本题考查了一元二次方程的应用和二次函数的应用,解题的关键是掌握题中的数量关系,列出相应方程和函数表达式.22、(1)①证明见解析;②证明见解析;(2)【分析】(1)①证出∠ABP=∠CBQ,由SAS证明△ABP≌△CBQ可得结论;
②根据正方形的性质和全等三角形的性质得到∠DAC=∠BAC,∠APF=∠ABP,即可证得△APF∽△ABP,再根据相似三角形的性质即可求解;(2)设正方形边长为,根据已知条件可求得PA的长,再根据第(1)②的结论可求得AF的长,从而求得答案.【详解】证明:(1)①∵四边形ABCD是正方形,∴AB=BC,∠ABC=90°,∵△PBQ为等腰直角三角形,∴∠PBQ=90°,PB=BQ,∵∠ABP+∠BPC=∠BPC+∠CBQ=,∴∠ABP=∠CBQ,在△ABP与△CBQ中,,∴△ABP≌△CBQ,∴AP=CQ;②如图,∵∠CPB=∠3+∠4=∠1+∠2,∵∠4=∠1=45°,∴∠3=∠2,∴∠5=∠2,∵∠6=∠1=45°,∴△PFA∽△BPA,∴,∴即;(2)设正方形边长为,则,∵,∴,∴PA=,∵,∴,解得:AF=,∴DF=,∴.【点睛】本题是四边形综合题目,考查了正方形的性质、全等三角形的判定与性质、相似三角形的判定与性质等知识;灵活运用相似三角形的判定与性质是解题的关键.23、(1)详见解析;(2)【分析】(1)直接利用等腰三角形的性质结合互余的定义得出∠BDC=∠PDC;(2)首先过点C作CM⊥PD于点M,进而得出△CPM∽△APD,求出EC的长即可得出答案.【详解】解:(1):∵,平分,∴,∴,∵,∴,∴,∴;(2)过点作于点,∵,∴,∵,∴,∴,设,∵,∴,∵,∴,解得:,∴.【点睛】此题主要考查了相似三角形的判定与性质以及等腰三角形的性质等知识,正确得出△CPM∽△APD是解题关键.24、(1)(4,3);(2)y=x+x;(3)【分析】(1)根据矩形的性质可知点D的纵坐标为3,代入直线解析式即可求出点D的横坐标,从而可确定点D的坐标;(2)直接将点A、D的坐标代入抛物线解析式即可;(3)当P为抛物线顶点时,△POA面积最大,将抛物线解析式化为顶点式,求出点P的坐标,再计算面积即可.【详解】解:(1)设D的横坐标为x,则根据题意有3=x,则x=4∴D点坐标为(4,3)(2)将A(6,0),D(4,3)代入y=ax+bx中,得解得:∴此抛物线的表达式为:y=x+x;(3)由于△POA底边为OA=6,∴当P为抛物线顶点时,△POA面积最大∴∴∴的最大值为【点睛】本题是一道二次函数与矩形相结合的题目,熟练掌握二次函数的性质和轴对称的性质;会利用待定系数法求函
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年度年福建省高校教师资格证之高等教育心理学通关提分题库及完整答案
- 2024年度年福建省高校教师资格证之高等教育学模拟预测参考题库及答案
- 五年级数学(小数乘法)计算题专项练习及答案汇编
- 2024年化工技术研发人员劳务协议
- 品创业案例分析
- 2024混凝土施工承揽协议样本
- 清明节主题班会课件
- 2024年房屋建筑施工协议样本
- 彩钢建筑租赁协议格式2024年
- 2024民间资金出借协议简明
- 青岛版三年级上册数学试题期中测试卷(含答案)
- 绵阳市高中2022级(2025届)高三第一次诊断性考试(一诊)地理试卷
- 2024-2025学年七年级上学期数学期中模拟试卷(苏科版2024)(含答案解析)
- 无人机租赁合同
- 军事理论(2024年版)学习通超星期末考试答案章节答案2024年
- 海尔智家财务报表分析报告
- 2024年急性胰腺炎急诊诊治专家共识解读课件
- 2024年连南瑶族自治县绿连林业发展有限公司招聘笔试参考题库附带答案详解
- 大学生国家安全教育知到章节答案智慧树2023年广西科技大学
- 高中选课走班选科建议-课件
- 新华书店施工组织设计(完整版)
评论
0/150
提交评论