版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2023年高考数学模拟试卷注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.如图,平面四边形中,,,,为等边三角形,现将沿翻折,使点移动至点,且,则三棱锥的外接球的表面积为()A. B. C. D.2.公比为2的等比数列中存在两项,,满足,则的最小值为()A. B. C. D.3.的展开式中,项的系数为()A.-23 B.17 C.20 D.634.已知三点A(1,0),B(0,),C(2,),则△ABC外接圆的圆心到原点的距离为()A. B.C. D.5.在中,角、、所对的边分别为、、,若,则()A. B. C. D.6.若双曲线:绕其对称中心旋转后可得某一函数的图象,则的离心率等于()A. B. C.2或 D.2或7.已知边长为4的菱形,,为的中点,为平面内一点,若,则()A.16 B.14 C.12 D.88.《九章算术》“少广”算法中有这样一个数的序列:列出“全步”(整数部分)及诸分子分母,以最下面的分母遍乘各分子和“全步”,各自以分母去约其分子,将所得能通分之分数进行通分约简,又用最下面的分母去遍乘诸(未通者)分子和以通之数,逐个照此同样方法,直至全部为整数,例如:及时,如图:记为每个序列中最后一列数之和,则为()A.147 B.294 C.882 D.17649.已知底面为正方形的四棱锥,其一条侧棱垂直于底面,那么该四棱锥的三视图可能是下列各图中的()A. B. C. D.10.若双曲线的一条渐近线与圆至多有一个交点,则双曲线的离心率的取值范围是()A. B. C. D.11.某几何体的三视图如图所示,图中圆的半径为1,等腰三角形的腰长为3,则该几何体表面积为()A. B. C. D.12.已知,,,则()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.已知一组数据1.6,1.8,2,2.2,2.4,则该组数据的方差是_______.14.若x,y满足,则的最小值为________.15.已知实数,且由的最大值是_________16.设函数,,其中.若存在唯一的整数使得,则实数的取值范围是_____.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知函数,.(1)当时,求不等式的解集;(2)若函数的图象与轴恰好围成一个直角三角形,求的值.18.(12分)的内角,,的对边分别为,,已知,.(1)求;(2)若的面积,求.19.(12分)已知椭圆的离心率为,且过点.(Ⅰ)求椭圆的方程;(Ⅱ)设是椭圆上且不在轴上的一个动点,为坐标原点,过右焦点作的平行线交椭圆于、两个不同的点,求的值.20.(12分)如图在四边形中,,,为中点,.(1)求;(2)若,求面积的最大值.21.(12分)如图,在四棱锥P-ABCD中,底面ABCD是边长为2的菱形,,为等边三角形,平面平面ABCD,M,N分别是线段PD和BC的中点.(1)求直线CM与平面PAB所成角的正弦值;(2)求二面角D-AP-B的余弦值;(3)试判断直线MN与平面PAB的位置关系,并给出证明.22.(10分)记函数的最小值为.(1)求的值;(2)若正数,,满足,证明:.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.A【解析】
将三棱锥补形为如图所示的三棱柱,则它们的外接球相同,由此易知外接球球心应在棱柱上下底面三角形的外心连线上,在中,计算半径即可.【详解】由,,可知平面.将三棱锥补形为如图所示的三棱柱,则它们的外接球相同.由此易知外接球球心应在棱柱上下底面三角形的外心连线上,记的外心为,由为等边三角形,可得.又,故在中,,此即为外接球半径,从而外接球表面积为.故选:A【点睛】本题考查了三棱锥外接球的表面积,考查了学生空间想象,逻辑推理,综合分析,数学运算的能力,属于较难题.2.D【解析】
根据已知条件和等比数列的通项公式,求出关系,即可求解.【详解】,当时,,当时,,当时,,当时,,当时,,当时,,最小值为.故选:D.【点睛】本题考查等比数列通项公式,注意为正整数,如用基本不等式要注意能否取到等号,属于基础题.3.B【解析】
根据二项式展开式的通项公式,结合乘法分配律,求得的系数.【详解】的展开式的通项公式为.则①出,则出,该项为:;②出,则出,该项为:;③出,则出,该项为:;综上所述:合并后的项的系数为17.故选:B【点睛】本小题考查二项式定理及展开式系数的求解方法等基础知识,考查理解能力,计算能力,分类讨论和应用意识.4.B【解析】
选B.考点:圆心坐标5.D【解析】
利用余弦定理角化边整理可得结果.【详解】由余弦定理得:,整理可得:,.故选:.【点睛】本题考查余弦定理边角互化的应用,属于基础题.6.C【解析】
由双曲线的几何性质与函数的概念可知,此双曲线的两条渐近线的夹角为,所以或,由离心率公式即可算出结果.【详解】由双曲线的几何性质与函数的概念可知,此双曲线的两条渐近线的夹角为,又双曲线的焦点既可在轴,又可在轴上,所以或,或.故选:C【点睛】本题主要考查了双曲线的简单几何性质,函数的概念,考查了分类讨论的数学思想.7.B【解析】
取中点,可确定;根据平面向量线性运算和数量积的运算法则可求得,利用可求得结果.【详解】取中点,连接,,,即.,,,则.故选:.【点睛】本题考查平面向量数量积的求解问题,涉及到平面向量的线性运算,关键是能够将所求向量进行拆解,进而利用平面向量数量积的运算性质进行求解.8.A【解析】
根据题目所给的步骤进行计算,由此求得的值.【详解】依题意列表如下:上列乘上列乘上列乘630603153021020156121510所以.故选:A【点睛】本小题主要考查合情推理,考查中国古代数学文化,属于基础题.9.C【解析】试题分析:通过对以下四个四棱锥的三视图对照可知,只有选项C是符合要求的.考点:三视图10.C【解析】
求得双曲线的渐近线方程,可得圆心到渐近线的距离,由点到直线的距离公式可得的范围,再由离心率公式计算即可得到所求范围.【详解】双曲线的一条渐近线为,即,由题意知,直线与圆相切或相离,则,解得,因此,双曲线的离心率.故选:C.【点睛】本题考查双曲线的离心率的范围,注意运用圆心到渐近线的距离不小于半径,考查化简整理的运算能力,属于中档题.11.C【解析】
几何体是由一个圆锥和半球组成,其中半球的半径为1,圆锥的母线长为3,底面半径为1,计算得到答案.【详解】几何体是由一个圆锥和半球组成,其中半球的半径为1,圆锥的母线长为3,底面半径为1,故几何体的表面积为.故选:.【点睛】本题考查了根据三视图求表面积,意在考查学生的计算能力和空间想象能力.12.B【解析】
利用指数函数和对数函数的单调性,将数据和做对比,即可判断.【详解】由于,,故.故选:B.【点睛】本题考查利用指数函数和对数函数的单调性比较大小,属基础题.二、填空题:本题共4小题,每小题5分,共20分。13.0.08【解析】
先求解这组数据的平均数,然后利用方差的公式可得结果.【详解】首先求得,.故答案为:0.08.【点睛】本题主要考查数据的方差,明确方差的计算公式是求解的关键,侧重考查数据分析的核心素养.14.5【解析】
先作出可行域,再做直线,平移,找到使直线在y轴上截距最小的点,代入即得。【详解】作出不等式组表示的平面区域,如图,令,则,作出直线,平移直线,由图可得,当直线经过C点时,直线在y轴上的截距最小,由,可得,因此的最小值为.故答案为:4【点睛】本题考查不含参数的线性规划问题,是基础题。15.【解析】
将其转化为几何意义,然后根据最值的条件求出最大值【详解】由化简得,又实数,图形为圆,如图:,可得,则由几何意义得,则,为求最大值则当过点或点时取最小值,可得所以的最大值是【点睛】本题考查了二元最值问题,将其转化为几何意义,得到圆的方程及斜率问题,对要求的二元二次表达式进行化简,然后求出最值问题,本题有一定难度。16.【解析】
根据分段函数的解析式画出图像,再根据存在唯一的整数使得数形结合列出临界条件满足的关系式求解即可.【详解】解:函数,且画出的图象如下:因为,且存在唯一的整数使得,故与在时无交点,,得;又,过定点又由图像可知,若存在唯一的整数使得时,所以,存在唯一的整数使得所以.根据图像可知,当时,恒成立.综上所述,存在唯一的整数使得,此时故答案为:【点睛】本题主要考查了数形结合分析参数范围的问题,需要根据题意分别分析定点右边的整数点中为满足条件的唯一整数,再数形结合列出时的不等式求的范围.属于难题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(1)(2)【解析】
(1)当时,,由可得,(所以,解得,所以不等式的解集为.(2)由题可得,因为函数的图象与轴恰好围成一个直角三角形,所以,解得,当时,,函数的图象与轴没有交点,不符合题意;当时,,函数的图象与轴恰好围成一个直角三角形,符合题意.综上,可得.18.(1);(2)【解析】
试题分析:(1)根据余弦定理求出B,带入条件求出,利用同角三角函数关系求其余弦,再利用两角差的余弦定理即可求出;(2)根据(1)及面积公式可得,利用正弦定理即可求出.试题解析:(1)由,得,∴.∵,∴.由,得,∴.∴.(2)由(1),得.由及题设条件,得,∴.由,得,∴,∴.点睛:解决三角形中的角边问题时,要根据条件选择正余弦定理,将问题转化统一为边的问题或角的问题,利用三角中两角和差等公式处理,特别注意内角和定理的运用,涉及三角形面积最值问题时,注意均值不等式的利用,特别求角的时候,要注意分析角的范围,才能写出角的大小.19.(Ⅰ)(Ⅱ)1【解析】
(Ⅰ)由题,得,,解方程组,即可得到本题答案;(Ⅱ)设直线,则直线,联立,得,联立,得,由此即可得到本题答案.【详解】(Ⅰ)由题可得,即,,将点代入方程得,即,解得,所以椭圆的方程为:;(Ⅱ)由(Ⅰ)知,设直线,则直线,联立,整理得,所以,联立,整理得,设,则,所以,所以.【点睛】本题主要考查椭圆标准方程的求法以及直线与椭圆的综合问题,考查学生的运算求解能力.20.(1)1;(2)【解析】
(1),在和中分别运用余弦定理可表示出,运用算两次的思想即可求得,进而求出;(2)在中,根据余弦定理和基本不等式,可求得,再由三角形的面积公式以及正弦函数的有界性,求出的面积的最大值.【详解】(1)由题设,则在和中由余弦定理得:,即解得,∴(2)在中由余弦定理得,即,∴所以面积的最大值为,此时.【点睛】本题主要考查余弦定理在解三角形中的应用,以及三角形面积公式的应用,意在考查学生的数学运算能力,属于中档题.21.(1)(2)(3)直线平面,证明见解析【解析】
取中点,连接,则,再由已知证明平面,以为坐标原点,分别以,,所在直线为,,轴建立空间直角坐标系,求出平面的一个法向量.(1)求出的坐标,由与所成角的余弦值可得直线与平面所成角的正弦值;(2)求出平面的一个法向量,再由两平面法向量所成角的余弦值可得二面角的余弦值;(3)求出的坐标,由,结合平面,可得直线平面.【详解】底面是边长为2的菱形,,为等边三角形.取中点,连接,则,为等边三角形,,又平面平面,且平面平面,平面.以为坐标原点,分别以,,所在直线为,,轴建立空间直角坐标系.则,,,,1,,,0,,,,,,0,,,,,,,.,,设平面的一个法向量为.由,取,得.(1)证明:设直线与平面所成角为,,则,即直线与平面所成角的正弦值为;(2)设平面的一个法向量为,由,得二面角的余弦值为;(3),,又平面,直线平面.【点睛】本题考查线面平行的证明,考查二面角的余弦值的求法,考查空间中线线、线面、面面间的位置关系等基础知识,考查推理能力与计算能力,属于中档题.22.(1)(2)证明见解析【解析】
(1)将函数转化为分段函数或利用绝对值三角不等式进行求解;(2)利用基本不等式或
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 《市场营销策划概述》课件
- 《社区康复知识讲座》课件
- 单位管理制度集合大全【员工管理篇】
- 单位管理制度集粹选集【人员管理篇】
- 单位管理制度范文大全人力资源管理篇
- 单位管理制度范例汇编【职员管理】
- 《药学专业知识(二)》高频考点
- 《证人与证人证言》课件
- 农学新篇章模板
- 酒店设施维护与管理培训
- GB/T 20200-2022α-烯基磺酸钠
- 光伏电池组件跟踪光源的PLC控制课件
- 圆周率1000000位-完整版
- 广东某监理公司检测仪器设备管理规定
- 2023财务部年度工作总结(7篇)
- ZL50型轮胎装载机液压系统
- 在线投票管理系统的开题报告
- 媒介融合概论
- 2023-2024学年广东省深圳市小学数学五年级上册期末评估试卷
- 新求精中级I听力原文
- 煤矿安全管理机构结构图
评论
0/150
提交评论