2022-2023学年重庆市巫山县数学九上期末统考模拟试题含解析_第1页
2022-2023学年重庆市巫山县数学九上期末统考模拟试题含解析_第2页
2022-2023学年重庆市巫山县数学九上期末统考模拟试题含解析_第3页
2022-2023学年重庆市巫山县数学九上期末统考模拟试题含解析_第4页
2022-2023学年重庆市巫山县数学九上期末统考模拟试题含解析_第5页
已阅读5页,还剩18页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年九上数学期末模拟试卷注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(每小题3分,共30分)1.已知二次函数,点A,B是其图像上的两点,()A.若,则 B.若,则C.若,则 D.若,则2.已知圆内接正三角形的面积为3,则边心距是()A.2 B.1 C. D.3.如图2,在平面直角坐标系中,点的坐标为(1,4)、(5,4)、(1、),则外接圆的圆心坐标是A.(2,3) B.(3,2) C.(1,3) D.(3,1)4.已知点A(2,y1)、B(4,y2)都在反比例函数(k<0)的图象上,则y1、y2的大小关系为()A.y1>y2 B.y1<y2 C.y1=y2 D.无法确定5.如图,正方形ABCD和正方形CGFE的顶点C,D,E在同一条直线上,顶点B,C,G在同一条直线上.O是EG的中点,∠EGC的平分线GH过点D,交BE于点H,连接FH交EG于点M,连接OH.以下四个结论:①GH⊥BE;②△EHM∽△GHF;③﹣1;④=2﹣,其中正确的结论是()A.①②③ B.①②④ C.①③④ D.②③④6.一元二次方程中的常数项是()A.-5 B.5 C.-6 D.17.下列成语描述的事件为随机事件的是()A.水涨船高B.守株待兔C.水中捞月D.缘木求鱼8.如图,在△ABC中,D,E分别是AB和AC上的点,且DE∥BC,,DE=6,则BC的长为()A.8 B.9 C.10 D.129.如图,已知⊙O中,半径OC垂直于弦AB,垂足为D,若OD=3,OA=5,则AB的长为()A.2 B.4 C.6 D.810.下列图形中是中心对称图形的共有()A.1个 B.2个 C.3个 D.4个二、填空题(每小题3分,共24分)11.如图,四边形是半圆的内接四边形,是直径,.若,则的度数为______.12.已知方程x2﹣3x﹣5=0的两根为x1,x2,则x12+x22=_________.13.一次生活常识知识竞赛一共有20道题,答对一题得5分,不答得0分,答错扣2分,小聪有1道题没答,竞赛成绩超过80分,则小聪至少答对了__________道题.14.若,则=_____.15.体育课上,小聪,小明,小智,小慧分别在点O处进行了一次铅球试投,铅球分别落在图中的点A,B,C,D处,则他们四人中,成绩最好的是______.16.我国古代数学著作《九章算术》中记载了一个问题:“今有邑方不知大小,各开中门,出北门三十步有木,出西门七百五十步见木,问:邑方几何?”.其大意是:如图,一座正方形城池,A为北门中点,从点A往正北方向走30步到B处有一树木,C为西门中点,从点C往正西方向走750步到D处正好看到B处的树木,则正方形城池的边长为_____步.17.为了解某校九年级学生每天的睡眠时间,随机调查了其中20名学生,将所得数据整理并制成如表,那么这些测试数据的中位数是______小时.睡眠时间(小时)6789学生人数864218.如图,一款落地灯的灯柱AB垂直于水平地面MN,高度为1.6米,支架部分的形为开口向下的抛物线,其顶点C距灯柱AB的水平距离为0.8米,距地面的高度为2.4米,灯罩顶端D距灯柱AB的水平距离为1.4米,则灯罩顶端D距地面的高度为______米.三、解答题(共66分)19.(10分)盒中有x枚黑棋和y枚白棋,这些棋除颜色外无其他差别.(1)从盒中随机取出一枚棋子,如果它是黑棋的概率是,写出表示x和y关系的表达式.(2)往盒中再放进10枚黑棋,取得黑棋的概率变为,求x和y的值.20.(6分)为了推动课堂教学改革,打造高效课堂,配合我市“两型课堂”的课题研究,莲城中学对八年级部分学生就一期来“分组合作学习”方式的支持程度进行调查,统计情况如图.试根据图中提供的信息,回答下列问题:(1)求本次被调查的八年级学生的人数,并补全条形统计图;(2)若该校八年级学生共有180人,请你估计该校八年级有多少名学生支持“分组合作学习”方式(含“非常喜欢”和“喜欢”两种情况的学生).21.(6分)如图,已知直线y=kx+6与抛物线y=ax2+bx+c相交于A,B两点,且点A(1,4)为抛物线的顶点,点B在x轴上.(1)求抛物线的解析式;(2)在(1)中抛物线的第三象限图象上是否存在一点P,使△POB与△POC全等?若存在,求出点P的坐标;若不存在,请说明理由;(3)若点Q是y轴上一点,且△ABQ为直角三角形,求点Q的坐标.22.(8分)已知关于的方程(1)当m取何值时,方程有两个实数根;(2)为m选取一个合适的整数,使方程有两个不相等的实数根,并求出这两个实数根.23.(8分)有四张反面完全相同的纸牌,其正面分别画有四个不同的几何图形,将四张纸牌洗匀正面朝下随机放在桌面上.(1)从四张纸牌中随机摸出一张,摸出的牌面图形是中心对称图形的概率是.(2)小明和小亮约定做一个游戏,其规则为:先由小明随机摸出一张,不放回.再由小亮从剩下的纸牌中随机摸出一张,若摸出的两张牌面图形既是轴对称图形又是中心对称图形,则小亮获胜,否则小明获胜.这个游戏公平吗?请用列表法(或画树状图)说明理由.(纸牌用表示)若不公平,请你帮忙修改一下游戏规则,使游戏公平.24.(8分)如图,在电线杆上的点处引同样长度的拉线,固定电线杆,在离电线杆6米处安置测角仪(其中点、、、在同一条直线上),在处测得电线杆上点处的仰角为,测角仪的高为米.(1)求电线杆上点离地面的距离;(2)若拉线,的长度之和为18米,求固定点和之间的距离.25.(10分)如图,的顶点坐标分别为,,.(1)画出关于点的中心对称图形;(2)画出绕点逆时针旋转的;直接写出点的坐标为_____;(3)求在旋转到的过程中,点所经过的路径长.26.(10分)如图,是规格为8×8的正方形网格,请在所给的网格中按下列要求操作.(1)在网格中建立平面直角坐标系,使点的坐标为,点的坐标为.(2)在第二象限内的格点上画一点,使点与线段组成一个以为底的等腰三角形,且腰长是无理数.求点的坐标及的周长(结果保留根号).(3)将绕点顺时针旋转90°后得到,以点为位似中心将放大,使放大前后的位似比为1:2,画出放大后的的图形.

参考答案一、选择题(每小题3分,共30分)1、B【分析】利用作差法求出,再结合选项中的条件,根据二次函数的性质求解.【详解】解:由得,∴,,,∵,∴,选项A,当时,,,A错误.选项B,当时,,,B正确.选项C,D无法确定的正负,所以不能确定当时,函数值的y1与y2的大小关系,故C,D错误.∴选B.【点睛】本题考查二次函数的性质、二次函数图象上点的坐标特征,解答本题的关键是利用作差法,结合二次函数的性质解答.2、B【分析】根据题意画出图形,连接AO并延长交BC于点D,则AD⊥BC,设OD=x,由三角形重心的性质得AD=3x,利用锐角三角函数表示出BD的长,由垂径定理表示出BC的长,然后根据面积法解答即可.【详解】如图,连接AO并延长交BC于点D,则AD⊥BC,设OD=x,则AD=3x,∵tan∠BAD=,∴BD=tan30°·AD=x,∴BC=2BD=2x,∵,∴×2x×3x=3,∴x=1所以该圆的内接正三边形的边心距为1,故选B.【点睛】本题考查正多边形和圆,三角形重心的性质,垂径定理,锐角三角函数,面积法求线段的长,解答本题的关键是明确题意,求出相应的图形的边心距.3、D【解析】根据垂径定理的推论“弦的垂直平分线必过圆心”,作两条弦的垂直平分线,交点即为圆心.解答:解:根据垂径定理的推论,则作弦AB、AC的垂直平分线,交点O1即为圆心,且坐标是(3,1).故选D.4、B【详解】试题分析:∵当k<0时,y=在每个象限内,y随x的增大而增大,∴y1<y2,故选B.考点:反比例函数增减性.5、A【分析】由四边形ABCD和四边形CGFE是正方形,得出△BCE≌△DCG,推出∠BEC+∠HDE=90°,从而得GH⊥BE;由GH是∠EGC的平分线,得出△BGH≌△EGH,再由O是EG的中点,利用中位线定理,得HO∥BG且HO=BG;由△EHG是直角三角形,因为O为EG的中点,所以OH=OG=OE,得出点H在正方形CGFE的外接圆上,根据圆周角定理得出∠FHG=∠EHF=∠EGF=45°,∠HEG=∠HFG,从而证得△EHM∽△GHF;设HN=a,则BC=2a,设正方形ECGF的边长是2b,则NC=b,CD=2a,由HO∥BG,得出△DHN∽△DGC,即可得出,得到,即a2+2ab-b2=0,从而求得,设正方形ECGF的边长是2b,则EG=2b,得到HO=b,通过证得△MHO∽△MFE,得到,进而得到,进一步得到.【详解】解:如图,∵四边形ABCD和四边形CGFE是正方形,∴BC=CD,CE=CG,∠BCE=∠DCG,在△BCE和△DCG中,∴△BCE≌△DCG(SAS),∴∠BEC=∠BGH,∵∠BGH+∠CDG=90°,∠CDG=∠HDE,∴∠BEC+∠HDE=90°,∴GH⊥BE.故①正确;∵△EHG是直角三角形,O为EG的中点,∴OH=OG=OE,∴点H在正方形CGFE的外接圆上,∵EF=FG,∴∠FHG=∠EHF=∠EGF=45°,∠HEG=∠HFG,∴△EHM∽△GHF,故②正确;∵△BGH≌△EGH,∴BH=EH,又∵O是EG的中点,∴HO∥BG,∴△DHN∽△DGC,设EC和OH相交于点N.设HN=a,则BC=2a,设正方形ECGF的边长是2b,则NC=b,CD=2a,即a2+2ab﹣b2=0,解得:a=b=(﹣1+)b,或a=(﹣1﹣)b(舍去),故③正确;∵△BGH≌△EGH,∴EG=BG,∵HO是△EBG的中位线,∴HO=BG,∴HO=EG,设正方形ECGF的边长是2b,∴EG=2b,∴HO=b,∵OH∥BG,CG∥EF,∴OH∥EF,∴△MHO△MFE,∴,∴EM=OM,∴,∴∵EO=GO,∴S△HOE=S△HOG,∴故④错误,故选A.【点睛】本题考查了正方形的性质,以及全等三角形的判定与性质,相似三角形的判定与性质,正确求得两个三角形的边长的比是解决本题的关键.6、C【分析】将一元二次方程化成一般形式,即可得到常数项.【详解】解:∵∴∴常数项为-6故选C.【点睛】本题主要考查了一元二次方程的一般形式,准确的化出一元二次方程的一般形式是解决本题的关键.7、B【解析】试题解析:水涨船高是必然事件,A不正确;守株待兔是随机事件,B正确;水中捞月是不可能事件,C不正确缘木求鱼是不可能事件,D不正确;故选B.考点:随机事件.8、C【解析】根据相似三角形的性质可得,再根据,DE=6,即可得出,进而得到BC长.【详解】∵DE∥BC,∴△ADE∽△ABC,∴,又∵,DE=6,∴,∴BC=10,故选:C.【点睛】本题主要考查了相似三角形的判定与性质的运用,在判定两个三角形相似时,应注意利用图形中已有的公共角、公共边等隐含条件,以充分发挥基本图形的作用.9、D【解析】利用垂径定理和勾股定理计算.【详解】根据勾股定理得,根据垂径定理得AB=2AD=8故选:D.【点睛】考查勾股定理和垂径定理,熟练掌握垂径定理是解题的关键.10、B【分析】根据中心对称图形的概念:把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形,进行判断.【详解】从左起第2、4个图形是中心对称图形,故选B.【点睛】本题考查了中心对称图形的概念,注意掌握图形绕某一点旋转180°后能够与自身重合.二、填空题(每小题3分,共24分)11、50【分析】连接AC,根据圆内接四边形的性质求出,再利用圆周角定理求出,,计算即可.【详解】解:连接AC,∵四边形ABCD是半圆的内接四边形,∴∵DC=CB∴∵AB是直径∴∴故答案为:50.【点睛】本题考查的知识点有圆的内接四边形的性质以及圆周角定理,熟记知识点是解题的关键.12、1.【解析】试题解析:∵方程的两根为故答案为1.点睛:一元二次方程的两个根分别为13、1【分析】设小聪答对了x道题,根据“答对题数×5−答错题数×2>80分”列出不等式,解之可得.【详解】设小聪答对了x道题,根据题意,得:5x−2(19−x)>80,解得x>16,∵x为整数,∴x=1,即小聪至少答对了1道题,故答案为:1.【点睛】本题主要考查一元一次不等式的应用,列不等式解应用题需要以“至少”、“最多”、“不超过”、“不低于”等词来体现问题中的不等关系.因此,建立不等式要善于从“关键词”中挖掘其内涵.14、【解析】=.15、小智【分析】通过比较线段的长短,即可得到OC>OD>OB>OA,进而得出表示最好成绩的点为点C.【详解】由图可得,OC>OD>OB>OA,∴表示最好成绩的点是点C,故答案为:小智.【点睛】本题主要参考了比较线段的长短,比较两条线段长短的方法有两种:度量比较法、重合比较法.16、1.【分析】设正方形城池的边长为步,根据比例性质求.【详解】解:设正方形城池的边长为步,即正方形城池的边长为1步.故答案为1.【点睛】本题考查了相似三角形的应用:构建三角形相似,利用相似比计算对应的线段长.17、1【解析】根据中位数的定义进行求解即可.【详解】∵共有20名学生,把这些数从小到大排列,处于中间位置的是第10和11个数的平均数,∴这些测试数据的中位数是=1小时;故答案为:1.【点睛】本题考查了中位数,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数).18、1.95【分析】以点B为原点建立直角坐标系,则点C为抛物线的顶点,即可设顶点式y=a(x−0.8)2+2.4,点A的坐标为(0,1.6),代入可得a的值,从而求得抛物线的解析式,将点D的横坐标代入,即可求点D的纵坐标就是点D距地面的高度【详解】解:如图,以点B为原点,建立直角坐标系.由题意,点A(0,1.6),点C(0.8,2.4),则设顶点式为y=a(x−0.8)2+2.4将点A代入得,1.6=a(0−0.8)2+2.4,解得a=−1.25∴该抛物线的函数关系为y=−1.25(x−0.8)2+2.4∵点D的横坐标为1.4∴代入得,y=−1.25×(1.4−0.8)2+2.4=1.95故灯罩顶端D距地面的高度为1.95米故答案为1.95.【点睛】本题考查了二次函数的性质在实际生活中的应用.为数学建模题,借助二次函数解决实际问题.三、解答题(共66分)19、(1)关系式;(2)x=15,y=1.【解析】(1)根据盒中有x枚黑棋和y枚白棋,得出袋中共有(x+y)个棋,再根据概率公式列出关系式即可;(2)根据概率公式和(1)求出的关系式列出关系式,再与(1)得出的方程联立方程组,求出x,y的值即可.【详解】(1)∵盒中有x枚黑棋和y枚白棋,∴袋中共有(x+y)个棋,∵黑棋的概率是,∴可得关系式;(2)如果往口袋中再放进10个黑球,则取得黑棋的概率变为,又可得;联立求解可得x=15,y=1.【点睛】考查概率的求法,如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.20、(1)54人,画图见解析;(2)160名.【分析】(1)根据喜欢“分组合作学习”方式的圆心角度数和频数可求总数,从而得出非常喜欢“分组合作学习”方式的人数,补全条形图.(2)利用扇形图得出支持“分组合作学习”方式所占的百分比,利用样本估计总体即可.【详解】解:(1)∵喜欢“分组合作学习”方式的圆心角度数为120°,频数为18,∴本次被调查的八年级学生的人数为:18÷=54(人).∴非常喜欢“分组合作学习”方式的人数为:54﹣18﹣6=30(人),如图补全条形图:(2)∵“非常喜欢”和“喜欢”两种情况在扇形统计图中所占圆心角为:120°+200°=320°,∴支持“分组合作学习”方式所占百分比为:×100%,∴该校八年级学生共180人中,估计有180×=160名支持“分组合作学习”方式.21、(1)y=﹣x2+2x+3;(2)存在,;(3)①;②Q点坐标为(0,)或(0,)或(0,1)或(0,3).【分析】(1)用待定系数法求解析式;(2)作PM⊥x轴于M,作PN⊥y轴于N,当∠POB=∠POC时,△POB≌△POC,设P(m,m),则m=﹣m2+2m+3,可求m;(3)分类讨论:①如图,当∠Q1AB=90°时,作AE⊥y轴于E,证△DAQ1∽△DOB,得,即;②当∠Q2BA=90°时,∠DBO+∠OBQ2=∠OBQ2+∠OQ2B=90°,证△BOQ2∽△DOB,得,;③当∠AQ3B=90°时,∠AEQ3=∠BOQ3=90°,证△BOQ3∽△Q3EA,,即;【详解】解:(1)把A(1,4)代入y=kx+6,∴k=﹣2,∴y=﹣2x+6,由y=﹣2x+6=0,得x=3∴B(3,0).∵A为顶点∴设抛物线的解析为y=a(x﹣1)2+4,∴a=﹣1,∴y=﹣(x﹣1)2+4=﹣x2+2x+3(2)存在.当x=0时y=﹣x2+2x+3=3,∴C(0,3)∵OB=OC=3,OP=OP,∴当∠POB=∠POC时,△POB≌△POC,作PM⊥x轴于M,作PN⊥y轴于N,∴∠POM=∠PON=45°.∴PM=PN∴设P(m,m),则m=﹣m2+2m+3,∴m=,∵点P在第三象限,∴P(,).(3)①如图,当∠Q1AB=90°时,作AE⊥y轴于E,∴E(0,4)∵∠DAQ1=∠DOB=90°,∠ADQ1=∠BDO∴△DAQ1∽△DOB,∴,即,∴DQ1=,∴OQ1=,∴Q1(0,);②如图,当∠Q2BA=90°时,∠DBO+∠OBQ2=∠OBQ2+∠OQ2B=90°∴∠DBO=∠OQ2B∵∠DOB=∠BOQ2=90°∴△BOQ2∽△DOB,∴,∴,∴OQ2=,∴Q2(0,);③如图,当∠AQ3B=90°时,∠AEQ3=∠BOQ3=90°,∴∠AQ3E+∠EAQ3=∠AQ3E+∠BQ3O=90°∴∠EAQ3=∠BQ3O∴△BOQ3∽△Q3EA,∴,即,∴OQ32﹣4OQ3+3=0,∴OQ3=1或3,∴Q3(0,1)或(0,3).综上,Q点坐标为(0,)或(0,)或(0,1)或(0,3).【点睛】考核知识点:二次函数,相似三角形.构造相似三角形,数形结合分类讨论是关键.22、(1)m≥—;(2)x1=0,x2=2.【分析】(1)方程有两个实数根,必须满足△=b2−4ac≥0,从而建立关于m的不等式,求出实数m的取值范围.(2)答案不唯一,方程有两个不相等的实数根,即△>0,可以解得m>−,在m>−的范围内选取一个合适的整数求解就可以.【详解】解:(1)△=[-2(m+1)]²-4×1×m²=8m+4∵方程有两个实数根∴△≥0,即8m+4≥0解得,m≥-(2)选取一个整数0,则原方程为,x²-2x=0解得x1=0,x2=2.【点睛】此题主要考查了根的判别式,以及解一元二次方程,关键是掌握一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.23、(1);(2)见解析【分析】(1)直接根据概率公式计算即可.

(2)首先列表列出可能的情况,摸出的两张牌面图形既是轴对称图形又是中心对称图形的结果有2种,由概率公式得出概率;得出游戏不公平;关键概率相等修改即可.【详解】解:(1)共有4张牌,正面是中心对称图形的情况有3种,从四张纸牌中随机摸出一张,摸出的牌面图形是中心对称图形的概率是;故答案为;(2)游戏不公平,理由如下:列表得:共有12种结果,每种结果出现的可能性相同,摸出的两张牌面图形既是轴对称图形又是中心对称图形的结果有2种,即∴(两张牌面图形既是轴对称图形又是中心对称图形)

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论