2022-2023学年江苏省扬州市邗江区数学九年级第一学期期末预测试题含解析_第1页
2022-2023学年江苏省扬州市邗江区数学九年级第一学期期末预测试题含解析_第2页
2022-2023学年江苏省扬州市邗江区数学九年级第一学期期末预测试题含解析_第3页
2022-2023学年江苏省扬州市邗江区数学九年级第一学期期末预测试题含解析_第4页
2022-2023学年江苏省扬州市邗江区数学九年级第一学期期末预测试题含解析_第5页
已阅读5页,还剩20页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年九上数学期末模拟试卷注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(每小题3分,共30分)1.下列汽车标志中,是中心对称图形的有()个.A.1 B.2 C.3 D.42.如图,中,,,,分别为边的中点,将绕点顺时针旋转到的位置,则整个旋转过程中线段所扫过部分的面积(即阴影部分面积)为()A. B. C. D.3.在圆内接四边形中,与的比为,则的度数为()A. B. C. D.4.把抛物线向右平移l个单位,然后向下平移3个单位,则平移后抛物线的解析式为()A. B.C. D.5.若∽,,,,则的长为()A.4 B.5 C.6 D.76.如图,PA、PB是⊙O切线,A、B为切点,点C在⊙O上,且∠ACB=55°,则∠APB等于()A.55° B.70° C.110° D.125°7.下列说法正确的是()A.任意掷一枚质地均匀的硬币10次,一定有5次正面向上B.通过抛掷一枚均匀的硬币确定谁先发球的比赛规则是不公平的C.“367人中至少有2人生日相同”是必然事件D.四张分别画有等边三角形、平行四边形、菱形、圆的卡片,从中随机抽取一张,恰好抽到中心对称图形的概率是.8.某种工件是由一个长方体钢块中间钻了一个上下通透的圆孔制作而成,其俯视图如图所示,则此工件的左视图是(

)A. B. C. D.9.某个几何体的三视图如图所示,该几何体是()A. B. C. D.10.《九章算术》总共收集了246个数学问题,这些算法要比欧洲同类算法早1500多年,对中国及世界数学发展产生过重要影响.在《九章算术》中有很多名题,下面就是其中的一道.原文:“今有圆材,埋在壁中,不知大小,以锯锯之,深一寸,锯道长一尺,问径几何?”翻译:如图,为的直径,弦于点.寸,寸,则可得直径的长为()A.13寸 B.26寸C.18寸 D.24寸二、填空题(每小题3分,共24分)11.如图,△ABC中,AD是中线,BC=8,∠B=∠DAC,则线段的长为________.12.一元二次方程的根是_____.13.如图,是⊙的直径,,点、在⊙上,、的延长线交于点,且,,有以下结论:①;②劣弧的长为;③点为的中点;④平分,以上结论一定正确的是______.14.已知:在矩形ABCD中,AB=4,AD=10,点P是BC上的一点,若∠APD=90°,则AP=_____.15.已知,那么=______.16.等腰Rt△ABC中,斜边AB=12,则该三角形的重心与外心之间的距离是_____.17.已知两个二次函数的图像如图所示,那么a1________a2(填“>”、“=”或“<”).18.如图,在中,,且,,点是斜边上的一个动点,过点分别作于点,于点,连接,则线段的最小值为________.三、解答题(共66分)19.(10分)如图,在中,,点是边上一点,连接,以为边作等边.如图1,若求等边的边长;如图2,点在边上移动过程中,连接,取的中点,连接,过点作于点.①求证:;②如图3,将沿翻折得,连接,直接写出的最小值.20.(6分)如图,是的直径,点在上,,FD切于点,连接并延长交于点,点为中点,连接并延长交于点,连接,交于点,连接.(1)求证:;(2)若的半径为,求的长.21.(6分)如图,四边形ABCD为圆内接四边形,对角线AC、BD交于点E,延长DA、CB交于点F.(1)求证:△FBD∽△FAC;(2)如果BD平分∠ADC,BD=5,BC=2,求DE的长;(3)如果∠CAD=60°,DC=DE,求证:AE=AF.22.(8分)如图,有三张不透明的卡片,除正面标记有不同数字外,其它均相同.将这三张卡片反面朝上洗匀后,从中随机抽取一张;放回洗匀后,再随机抽取一张.我们把第一次抽取的卡片上标记的数字记作,第二次抽取的卡片上标记的数字记作.(1)写出为负数的概率;(2)求使得一次函数的图象经过第二、三、四象限的概率.(用树状图或列表法求解)23.(8分)甲、乙两人分别站在相距6米的A、B两点练习打羽毛球,已知羽毛球飞行的路线为抛物线的一部分,甲在离地面1米的C处发出一球,乙在离地面1.5米的D处成功击球,球飞行过程中的最高点H与甲的水平距离AE为4米,现以A为原点,直线AB为x轴,建立平面直角坐标系(如图所示).求羽毛球飞行的路线所在的抛物线的表达式及飞行的最高高度.24.(8分)已知抛物线,求证:无论为何值,抛物线与轴总有两个交点.25.(10分)如图,转盘A的三个扇形面积相等,分别标有数字1,2,3,转盘B的四个扇形面积相等,分别有数字1,2,3,1.转动A、B转盘各一次,当转盘停止转动时,将指针所落扇形中的两个数字相乘(当指针落在四个扇形的交线上时,重新转动转盘).(1)用树状图或列表法列出所有可能出现的结果;(2)求两个数字的积为奇数的概率.26.(10分)定义:只有一组对角是直角的四边形叫做损矩形,连接它的两个非直角顶点的线段叫做这个损矩形的直径.如图1,∠ABC=∠ADC=90°,四边形ABCD是损矩形,则该损矩形的直径是线段AC.同时我们还发现损矩形中有公共边的两个三角形角的特点:在公共边的同侧的两个角是相等的.如图1中:△ABC和△ABD有公共边AB,在AB同侧有∠ADB和∠ACB,此时∠ADB=∠ACB;再比如△ABC和△BCD有公共边BC,在CB同侧有∠BAC和∠BDC,此时∠BAC=∠BDC.(1)请在图1中再找出一对这样的角来:=.(2)如图2,△ABC中,∠ABC=90°,以AC为一边向外作菱形ACEF,D为菱形ACEF对角线的交点,连接BD,当BD平分∠ABC时,判断四边形ACEF为何种特殊的四边形?请说明理由.(3)在第(2)题的条件下,若此时AB=6,BD=8,求BC的长.

参考答案一、选择题(每小题3分,共30分)1、B【分析】根据中心对称图形的概念逐一进行分析即可得.【详解】第一个图形是中心对称图形;第二个图形不是中心对称图形;第三个图形是中心对称图形;第四个图形不是中心对称图形,故选B.【点睛】本题考查了中心对称图形,熟知中心对称图形是指一个图形绕某一个点旋转180度后能与自身完全重合的图形是解题的关键.2、C【分析】连接BH,BH1,先证明△OBH≌△O1BH1,再根据勾股定理算出BH,再利用扇形面积公式求解即可.【详解】∵O、H分别为边AB,AC的中点,将△ABC绕点B顺时针旋转120°到△A1BC1的位置,∴△OBH≌△O1BH1,利用勾股定理可求得BH=,所以利用扇形面积公式可得.故选C.【点睛】本题考查全等三角形的判定及性质、勾股定理、扇形面积的计算,利用全等对面积进行等量转换方便计算是关键.3、C【分析】根据圆内接四边形对角互补的性质即可求得.【详解】∵在圆内接四边形ABCD中,:=3:2,∴∠B:∠D=3:2,∵∠B+∠D=180°,∴∠B=180°×=.故选C.【点睛】本题考查了圆内接四边形的性质,熟练掌握圆内接四边形的性质是解题的关键.4、D【分析】根据题意原抛物线的顶点坐标为(0,0),根据平移规律得平移后抛物线顶点坐标为(1,-3),根据抛物线的顶点式求解析式.【详解】解:抛物线形平移不改变解析式的二次项系数,平移后顶点坐标为(1,-3),∴平移后抛物线解析式为.故选:D.【点睛】本题考查抛物线的平移与抛物线解析式的联系,关键是把抛物线的平移转化为顶点的平移,利用顶点式求解析式.5、C【分析】利用相似三角形的性质,列出比例式即可解决问题.【详解】解:∵△ABC∽△DEF,,,,∴,∴,∴EF=6.故选C.【点睛】本题考查相似三角形的性质,解题的关键是熟练掌握相似三角形的对应边成比例,属于中考基础题.6、B【分析】根据圆周角定理构造它所对的弧所对的圆心角,即连接OA,OB,求得∠AOB=110°,再根据切线的性质以及四边形的内角和定理即可求解.【详解】解:连接OA,OB,∵PA,PB是⊙O的切线,∴PA⊥OA,PB⊥OB,∵∠ACB=55°,∴∠AOB=110°,∴∠APB=360°−90°−90°−110°=70°.故选B.【点睛】本题考查了多边形的内角和定理,切线的性质,圆周角定理的应用,关键是求出∠AOB的度数.7、C【分析】利用随机事件和必然事件的定义对A、C进行判断;利用比较两事件的概率的大小判断游戏的公平性对B进行判断;利用中心对称的性质和概率公式对D进行判断.【详解】A、任意掷一枚质地均匀的硬币10次,可能有5次正面向上,所以A选项错误;B、通过抛掷一枚均匀的硬币确定谁先发球的比赛规则是公平的,所以B选项错误;C、“367人中至少有2人生日相同”是必然事件,所以C选项正确;D、四张分别画有等边三角形、平行四边形、菱形、圆的卡片,从中随机抽取一张,恰好抽到中心对称图形的概率是,所以D选项错误.故选:C.【点睛】本题考查了随机事件以及概率公式和游戏公平性:判断游戏公平性需要先计算每个事件的概率,然后比较概率的大小,概率相等就公平,否则就不公平.8、A【解析】从左面看应是一长方形,看不到的应用虚线,由俯视图可知,虚线离边较近,故选A.9、D【解析】根据几何体的三视图判断即可.【详解】由三视图可知:该几何体为圆锥.故选D.【点睛】考查了由三视图判断几何体的知识,解题的关键是具有较强的空间想象能力,难度不大.10、B【分析】根据垂径定理可知AE的长.在Rt△AOE中,运用勾股定理可求出圆的半径,进而可求出直径CD的长.【详解】连接OA,由垂径定理可知,点E是弦AB的中点,设半径为r,由勾股定理得,即解得:r=13所以CD=2r=26,即圆的直径为26,故选B.【点睛】本题主要考查了垂径定理和勾股定理的性质和求法,熟练掌握相关性质是解题的关键.二、填空题(每小题3分,共24分)11、【解析】已知BC=8,AD是中线,可得CD=4,在△CBA和△CAD中,由∠B=∠DAC,∠C=∠C,可判定△CBA∽△CAD,根据相似三角形的性质可得,即可得AC2=CD•BC=4×8=32,解得AC=4.12、x1=1,x2=2.【分析】整体移项后,利用因式分解法进行求解即可得.【详解】x(x-2)-(x-2)=0,,x-1=0或x-2=0,所以x1=1,x2=2,故答案为x1=1,x2=2.【点睛】本题考查了解一元二次方程——因式分解法,根据方程的特点熟练选择恰当的方法进行求解是关键.13、①②③【分析】①根据圆内接四边形的外角等于其内对角可得∠CBE=∠ADE,根据等边对等角得出∠CBE=∠E,等量代换即可得到∠ADE=∠E;②根据圆内接四边形的外角等于其内对角可得∠A=∠BCE=70,根据等边对等角以及三角形内角和定理求出∠AOB=40,再根据弧长公式计算得出劣弧的长;③根据圆周角定理得出∠ACD=90,即AC⊥DE,根据等角对等边得出AD=AE,根据等腰三角形三线合一的性质得出∠DAC=∠EAC,再根据圆周角定理得到点C为的中点;④由DB⊥AE,而∠A≠∠E,得出BD不平分∠ADE.【详解】①∵ABCD是⊙O的内接四边形,∴∠CBE=∠ADE,∵CB=CE,∴∠CBE=∠E,∴∠ADE=∠E,故①正确;②∵∠A=∠BCE=70,∴∠AOB=40,∴劣弧的长=,故②正确;③∵AD是⊙O的直径,∴∠ACD=90,即AC⊥DE,∵∠ADE=∠E,∴AD=AE,∴∠DAC=∠EAC,∴点C为的中点,故③正确;④∵DB⊥AE,而∠A≠∠E,∴BD不平分∠ADE,故④错误.所以正确结论是①②③.故答案为①②③.【点睛】本题考查了圆内接四边形的性质,圆周角定理,弧长的计算,等腰三角形的判定与性质,三角形内角和定理,掌握相关性质及公式是解题的关键.14、2或4【解析】设BP的长为x,则CP的长为(10-x),分别在Rt△ABP和Rt△DCP中利用勾股定理用x表示出AP2和DP2,然后在Rt△ADP中利用勾股定理得出关于x的一元二次方程,解出x的值,即可得出AP的长.【详解】解:如图所示:∵四边形ABCD是矩形,∴∠B=∠C=90°,BC=AD=10,DC=AB=4,设BP的长为x,则CP的长为(10-x),在Rt△ABP中,由勾股定理得:AP2=AB2+BP2=42+x2,在Rt△DCP中,由勾股定理得:DP2=DC2+CP2=42+(10-x)2,又∵∠APD=90°,在Rt△APD中,AD2=AP2+DP2,∴42+x2+42+(10-x)2=102,整理得:x2-10x+16=0,解得:x1=2,x2=8,当BP=2时,AP==;当BP=8时,AP==.故答案为:或.【点睛】本题主要考查了矩形的性质和勾股定理及一元二次方程,学会利用方程的思想求线段的长是关键.15、【分析】直接把代入解析式,即可得到答案.【详解】解:∵,∴当时,有;故答案为:.【点睛】本题考查了求函数值,解题的关键是熟练掌握函数的解析式.16、1.【分析】画出图形,找到三角形的重心与外心,利用重心和外心的性质求距离即可.【详解】如图,点D为三角形外心,点I为三角形重心,DI为所求.∵直角三角形的外心是斜边的中点,∴CD=AB=6,∵I是△ABC的重心,∴DI=CD=1,故答案为:1.【点睛】本题主要考查三角形的重心和外心,能够掌握三角形的外心和重心的性质是解题的关键.17、【分析】直接利用二次函数的图象开口大小与a的关系进而得出答案.【详解】解:如图所示:的开口小于的开口,则a1>a2,故答案为:>.【点睛】此题主要考查了二次函数的图象,正确记忆开口大小与a的关系是解题关键.18、.【分析】由勾股定理求出的长,再证明四边形是矩形,可得,根据垂线段最短和三角形面积即可解决问题.【详解】解:∵,且,,∴,∵,,∴,∴四边形是矩形.如图,连接AD,则,∴当时,的值最小,此时,的面积,∴,∴的最小值为;故答案为:.【点睛】本题考查了矩形的判定和性质、勾股定理、三角形面积、垂线段最短等知识,解题的关键是熟练掌握基本知识,本题属于中考常考题型.三、解答题(共66分)19、(1);(2)证明见解析;(3)最小值为【分析】(1)过C做CF⊥AB,垂足为F,由题意可得∠B=30°,用正切函数可求CF的长,再用正弦函数即可求解;(2)如图(2)1:延长BC到G使CG=BC,易得△CGE≌△CAD,可得CF∥GE,得∠CFA=90°,CF=GE再证DG=AD,得CF=DG,可得四边形DGFC是矩形即可;(3)如图(2)2:设ED与AC相交于G,连接FG,先证△EDF≌△FD'B得BD'=DE,当DE最大时最小,然后求解即可;【详解】解:(1)如图:过C做CF⊥AB,垂足为F,∵,∴∠A=∠B=30°,BF=3∵tan∠B=∴CF=又∵sin∠CDB=sin45°=∴DC=∴等边的边长为;①如图(2)1:延长BC到G使CG=BC∵∠ACB=120°∴∠GCE=180°-120°=60°,∠A=∠B=30°又∵∠ACB=60°∴∠GCE=∠ACD又∵CE=CD∴△CGE≌△CAD(SAS)∴∠G=∠A=30°,GE=AD又∵EF=FB∴GE∥FC,GE=FC,∴∠BCF=∠G=30°∴∠ACF=∠ACB-∠BCF=90°∴CF∥DG∵∠A=30°∴GD=AD,∴CF=DG∴四边形DGFC是平行四边形,又∵∠ACF=90°∴四边形DGFC是矩形,∴②)如图(2)2:设ED与AC相交于G,连接FG由题意得:EF=BF,∠EFD=∠D'FB∴△EDF≌△FD'B∴BD'=DE∴BD'=CD∴当BD'取最小值时,有最小值当CD⊥AB时,BD'min=AC,设CDmin=a,则AC=BC=2a,AB=2a的最小值为;【点睛】本题属于几何综合题,考查了矩形的判定、全等三角形的判定、直角三角形的性质等知识点;但本题知识点比较隐蔽,正确做出辅助线,发现所考查的知识点是解答本题的关键.20、(1)证明见解析;(2).【分析】(1)利用圆周角定理及,求得∠ABC=30°,利用切线的性质求得∠D=30°,根据直角三角形30度角的性质从而证出;(2)先证得△OAC为等边三角形,求得的长,过点C作CM⊥AO于点M,证出△CME∽△FBE,求出,利用勾股定理求出,利用面积法即可求出.【详解】(1)连接BC,∵AB是⊙O的直径,,

∴∠ACB=90°,∠ABC=30°,∠BAC=60°,

∴,

∵BD切于点,

∴AB⊥DB,

∴∠D=90∠BAD=9060°=30°,∴AD=2AB,∴AD=4AC,∴;(2)连接OC,过点C作CM⊥AO于点M,∵∠BAC=60°,OA=OC,∴△OAC为等边三角形,∴AC=OA=OC=2,OM=MA=1,∵CM⊥AO,∴OM=MA==1,在中,,,∴,∵点为中点,∴,∴,∵BF切于点,

∴AB⊥FB,

∴∠FBE=90,∵∠FEB=∠CEM,∴,∴,即,∴,在中,,,,∴,∵AB是⊙O的直径

∴∠AGB=90°,∴BG⊥AF,∵,∴,∴【点睛】本题是圆的综合题,考查了切线的性质、相似三角形的判定与性质、圆周角定理、勾股定理以及三角形面积的计算,学会添加常用辅助线,熟练掌握圆周角定理,并能进行推理计算是解决问题的关键.21、(1)见解析;(2);(3)见解析【分析】(1)可得出∠ADB=∠ACB,∠AFC=∠BFD,则结论得证;(2)证明△BEC∽△BCD,可得,可求出BE长,则DE可求出;(3)根据圆内接四边形的性质和三角形的内角和定理进行证明AB=AF;根据等腰三角形的判定与性质和圆周角定理可证明AE=AB,则结论得出.【详解】(1)证明:∵∠ADB=∠ACB,∠AFC=∠BFD,∴△FBD∽△FAC;(2)解:∵BD平分∠ADC,∴∠ADB=∠BDC,∵∠ADB=∠ACB,∴∠ACB=∠BDC,∵∠EBC=∠CBD,∴△BEC∽△BCD,∴,∴,∴BE=,∴DE=BD﹣BE=5﹣=;(3)证明:∵∠CAD=60°,∴∠CBD=60°,∠ACD=∠ABD,∵DC=DE,∴∠ACD=∠DEC,∵∠ABC+∠ADC=∠ABC+∠ABF=180°,∴∠FBD=180°,∴∠ABF=∠ADC=120°=120°﹣∠ACD=120°﹣∠DEC=120°﹣(60°+∠ADE)=60°﹣∠ADE,而∠F=60°﹣∠ACF,∵∠ACF=∠ADE,∴∠ABF=∠F,∴AB=AF.∵四边形ABCD内接于圆,∴∠ABD=∠ACD,又∵DE=DC,∴∠DCE=∠DEC=∠AEB,∴∠ABD=∠AEB,∴AB=AE.∴AE=AF.【点睛】本题是圆的综合题,考查了圆内接四边形的性质,圆周角定理,相似三角形的判定与性质,等腰三角形的判定与性质,角平分线的性质,三角形的内角和定理等知识,熟练掌握相似三角形的判定与性质是解题的关键.22、(1);(2)【分析】(1)用负数的个数除以数的总数即为所求的概率;

(2)画树状图列举出所有情况,看k<0,b<0的情况占总情况的多少即可.【详解】解:(1)共有3个数,其中负数有2个,那么为负数的概率为(2)画树状图可知,两次抽取卡片试验共有9种不同结果,每种可能性相同“一次函数图象经过第二、三、四象限”等价于“且”抽取卡片满足,有4种情况所以,一次函数图象经过第二、三、四象限的概率是.【点睛】考查概率的求法;用到的知识点为:概率=所求情况数与总情况数之比.注意过二、三、四象限的一次函数的k为负数,b为负数.23、米.【分析】先求抛物线对称轴,再根据待定系数法求抛物线解析式,再求函数最大值.【详解】由题意得:C(0,1),D(6,1.5),抛物线的对称轴为直线x=4,设抛物线的表达式为:y=ax2+bx+1(a≠0),则据题意得:,解得:,∴羽毛球飞行的路线所在的抛物线的表达式为:y=﹣x2+x+1,∵y=﹣(x﹣4)2+,∴飞行的最高高度为:米.【点睛】本题考核知识点:二次函数的应用.解题关键点:熟记二次函数的基本性质.24、证明见解析【分析】求得

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论