下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年九上数学期末模拟试卷注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每小题3分,共30分)1.下列多边形一定相似的是()A.两个平行四边形 B.两个矩形C.两个菱形 D.两个正方形2.如图,小明同学设计了一个测量圆直径的工具,标有刻度的尺子.在点钉在一起.并使它们保持垂直,在测直径时,把点靠在圆周上.读得刻度个单位,个单位,则圆的直径为()A.12个单位 B.10个单位 C.11个单位 D.13个单位3.如图,正五边形内接于⊙,为上的一点(点不与点重合),则的度数为()A. B. C. D.4.关于二次函数,下列说法正确的是()A.图像与轴的交点坐标为 B.图像的对称轴在轴的右侧C.当时,的值随值的增大而减小 D.的最小值为-35.小明沿着坡度为1:2的山坡向上走了10m,则他升高了()A.5m
B.2m
C.5m
D.10m6.三角形的两边分别2和6,第三边是方程x2-10x+21=0的解,则三角形周长为()A.11 B.15 C.11或15 D.不能确定7.如图,E是平行四边形ABCD的对角线BD上的点,连接AE并延长交BC于点F,且,则的值是()A. B. C. D.8.如图,点A、B、C在⊙O上,∠ACB=130°,则∠AOB的度数为()A.50° B.80° C.100° D.110°9.如图,将正方形OABC放在平面直角坐标系中,O是原点,点A的坐标为(1,),则点C的坐标为()A.(-,1) B.(-1,) C.(,1) D.(-,-1)10.如图,AB是半圆O的直径,半径OC⊥AB于O,AD平分∠CAB交于点D,连接CD,OD,BD.下列结论中正确的是()A.AC∥OD B.C.△ODE∽△ADO D.二、填空题(每小题3分,共24分)11.如图,矩形中,,,是边上的一点,且,点在矩形所在的平面中,且,则的最大值是_________.12.已知一条抛物线,以下说法:①对称轴为,当时,随的增大而增大;②;③顶点坐标为;④开口向上.其中正确的是______.(只填序号)13.一个不透明的袋子中装有3个白球和若干个黑球,它们除颜色外,完全相同.从袋子中随机摸出一球,记下颜色并放回,重复该试验多次,发现得到白球的频率稳定在0.6,则可判断袋子中黑球的个数为______.14.如图,AB是⊙O的直径,AC是⊙O的切线,OC交⊙O于点D,若∠C=40°,OA=9,则BD的长为.(结果保留π)15.如图,直线交x轴于点A,交y轴于点B,点P是x轴上一动点,以点P为圆心,以1个单位长度为半径作⊙P,当⊙P与直线AB相切时,点P的坐标是______.16.将边长分别为,,的三个正方形按如图所示的方式排列,则图中阴影部分的面积为______.17.关于的一元二次方程有两个不相等的实数根,则的取值范围是__________.18.如图,在正方形铁皮上剪下一个扇形和一个半径为的圆形,使之恰好围成一个圆锥,则圆锥的高为____.三、解答题(共66分)19.(10分)如图,已知AD∥BE∥CF,直线l1、l2与这三条平行线分别交于点A、B、C和点D、E、F.若,DE=6,求EF的长.20.(6分)如图,一位篮球运动员在离篮圈水平距离4处跳起投篮,球运行的高度()与运行的水平距离()满足解析式,当球运行的水平距离为1.5时,球离地面高度为2.2,球在空中达到最大高度后,准确落入篮圈内.已知篮圈中心离地面距离为2.35.(1)当球运行的水平距离为多少时,达到最大高度?最大高度为多少?(2)若该运动员身高1.8,这次跳投时,球在他头顶上方3.25处出手,问球出手时,他跳离地面多高?21.(6分)如图,在Rt△ABC中,∠C=90°,以BC为直径的⊙O交斜边AB于点M,若H是AC的中点,连接MH.(1)求证:MH为⊙O的切线.(2)若MH=,tan∠ABC=,求⊙O的半径.(3)在(2)的条件下分别过点A、B作⊙O的切线,两切线交于点D,AD与⊙O相切于N点,过N点作NQ⊥BC,垂足为E,且交⊙O于Q点,求线段NQ的长度.22.(8分)为深化课改,落实立德树人目标,某学校设置了以下四门拓展性课程:A.数学思维,B.文学鉴赏,C.红船课程,D.3D打印,规定每位学生选报一门.为了解学生的报名情况,随机抽取了部分学生进行调查,并制作成如下两幅不完整的统计图,请回答下列问题:(1)求这次被调查的学生人数;(2)请将条形统计图补充完整;(3)假如全校有学生1000人,请估计选报“红船课程”的学生人数.23.(8分)在锐角三角形中,已知,,的面积为,求的余弦值.24.(8分)如图,AB是⊙O的直径,直线MC与⊙O相切于点C.过点A作MC的垂线,垂足为D,线段AD与⊙O相交于点E.(1)求证:AC是∠DAB的平分线;(2)若AB=10,AC=4,求AE的长.25.(10分)如图,抛物线与x轴交于A、B两点,与y轴交于点C,且OA=2,OC=1.(1)求抛物线的解析式.(2)若点D(2,2)是抛物线上一点,那么在抛物线的对称轴上,是否存在一点P,使得△BDP的周长最小,若存在,请求出点P的坐标,若不存在,请说明理由.注:二次函数(≠0)的对称轴是直线=.26.(10分)某商场试销一种成本为每件60元的服装,规定试销期间销售单价不低于成本单价,且获利不得高于45%,经试销发现,销售量(件)与销售单价(元)符合一次函数,且时,;时,.(1)求一次函数的表达式;(2)若该商场获得利润为元,试写出利润与销售单价之间的关系式;销售单价定为多少元时,商场可获得最大利润,最大利润是多少元?(3)若该商场获得利润不低于500元,试确定销售单价的范围.
参考答案一、选择题(每小题3分,共30分)1、D【分析】利用相似多边形的定义:对应边成比例,对应角相等的两个多边形相似,逐一分析各选项可得答案.【详解】解:两个平行四边形,既不满足对应边成比例,也不满足对应角相等,所以A错误,两个矩形,满足对应角相等,但不满足对应边成比例,所以B错误,两个菱形,满足对应边成比例,但不满足对应角相等,所以C错误,两个正方形,既满足对应边成比例,也满足对应角相等,所以D正确,故选D.【点睛】本题考查的是相似多边形的定义与判定,掌握定义法判定多边形相似是解题的关键.2、B【分析】根据圆中的有关性质“90°的圆周角所对的弦是直径”.判断EF即为直径,然后根据勾股定理计算即可.【详解】解:连接EF,
∵OE⊥OF,
∴EF是圆的直径,.故选:B.【点睛】本题考查圆周角的性质定理,勾股定理.掌握“90°的圆周角所对的弦是直径”定理的应用是解决此题的关键.3、B【分析】根据圆周角的性质即可求解.【详解】连接CO、DO,正五边形内心与相邻两点的夹角为72°,即∠COD=72°,同一圆中,同弧或同弦所对应的圆周角为圆心角的一半,故∠CPD=,故选B.【点睛】此题主要考查圆内接多边形的性质,解题的关键是熟知圆周角定理的应用.4、D【解析】分析:根据题目中的函数解析式可以判断各个选项中的结论是否成立,从而可以解答本题.详解:∵y=2x2+4x-1=2(x+1)2-3,∴当x=0时,y=-1,故选项A错误,该函数的对称轴是直线x=-1,故选项B错误,当x<-1时,y随x的增大而减小,故选项C错误,当x=-1时,y取得最小值,此时y=-3,故选项D正确,故选D.点睛:本题考查二次函数的性质、二次函数的最值,解答本题的关键是明确题意,利用二次函数的性质解答.5、B【详解】解:由题意得:BC:AB=1:2,设BC=x,AB=2x,则AC===x=10,解得:x=2.故选B.6、B【详解】解:方程x2-10x+21=0,变形得:(x-3)(x-7)=0,解得:x1=3,x2=7,若x=3,三角形三边为2,3,6,不合题意,舍去,则三角形的周长为2+6+7=1.故选:B.7、A【分析】由BF∥AD,可得,再借助平行四边形的性质把AD转化为BC即可.【详解】∵四边形ABCD是平行四边形,∴AD=BC,∵,∴.∵BF∥AD,∴=.故选A【点睛】本题主要考查平行四边形的性质和平行线截线段成比例定理,掌握平行线截线段成比例定理是解题的关键.8、C【分析】根据圆内接四边形的性质和圆周角定理即可得到结论.【详解】在优弧AB上任意找一点D,连接AD,BD.∵∠D=180°﹣∠ACB=50°,∴∠AOB=2∠D=100°,故选:C.【点睛】本题考查了圆周角定理,圆内接四边形的性质,正确的作出辅助线是解题的关键.9、A【解析】试题分析:作辅助线构造出全等三角形是解题的关键,也是本题的难点.如图:过点A作AD⊥x轴于D,过点C作CE⊥x轴于E,根据同角的余角相等求出∠OAD=∠COE,再利用“角角边”证明△AOD和△OCE全等,根据全等三角形对应边相等可得OE=AD,CE=OD,然后根据点C在第二象限写出坐标即可.∴点C的坐标为(-,1)故选A.考点:1、全等三角形的判定和性质;2、坐标和图形性质;3、正方形的性质.10、A【分析】A.根据等腰三角形的性质和角平分线的性质,利用等量代换求证∠CAD=∠ADO即可;
B.过点E作EF⊥AC,根据角平分线上的点到角的两边的距离相等可得OE=EF,再根据直角三角形斜边大于直角边可证;
C.两三角形中,只有一个公共角的度数相等,其它两角不相等,所以不能证明③△ODE∽△ADO;
D.根据角平分线的性质得出∠CAD=∠BAD,根据在同圆或等圆中,相等的圆周角所对的弦相等,可得CD=BD,又因为CD+BD>BC,又由AC=BC可得AC<2CD,从而可判断D错误.【详解】解:解:A.∵AB是半圆直径,
∴AO=OD,
∴∠OAD=∠ADO,
∵AD平分∠CAB交弧BC于点D,
∴∠CAD=∠DAO=∠CAB,
∴∠CAD=∠ADO,
∴AC∥OD,
∴A正确.
B.如图,过点E作EF⊥AC,
∵OC⊥AB,AD平分∠CAB交弧BC于点D,
∴OE=EF,
在Rt△EFC中,CE>EF,
∴CE>OE,
∴B错误.
C.∵在△ODE和△ADO中,只有∠ADO=∠EDO,
∵∠COD=2∠CAD=2∠OAD,
∴∠DOE≠∠DAO,
∴不能证明△ODE和△ADO相似,
∴C错误;D.∵AD平分∠CAB交于点D,∴∠CAD=∠BAD.∴CD=BD∴BC<CD+BD=2CD,∵半径OC⊥AB于O,∴AC=BC,∴AC<2CD,∴D错误.故选A.【点睛】本题主要考查相似三角形的判定与性质,圆心角、弧、弦的关系,圆周角定理,等腰三角形的性质,三角形内角和定理等知识点的灵活运用,此题步骤繁琐,但相对而言,难易程度适中,很适合学生的训练.二、填空题(每小题3分,共24分)11、5+.【分析】由四边形是矩形得到内接于,利用勾股定理求出直径BD的长,由确定点P在上,连接MO并延长,交于一点即为点P,此时PM最长,利用勾股定理求出OM,再加上OP即可得到PM的最大值.【详解】连接BD,∵四边形ABCD是矩形,∴∠BAD=∠BCD=90,AD=BC=8,∴BD=10,以BD的中点O为圆心5为半径作,∵,∴点P在上,连接MO并延长,交于一点即为点P,此时PM最长,且OP=5,过点O作OH⊥AD于点H,∴AH=AD=4,∵AM=2,∴MH=2,∵点O、H分别为BD、AD的中点,∴OH为△ABD的中位线,∴OH=AB=3,∴OM=,∴PM=OP+OM=5+.故答案为:5+.【点睛】此题考查矩形的性质,勾股定理,圆内接四边形的性质,确定PM的位置是重点,再分段求出OM及OP的长,即可进行计算.12、①④【分析】先确定顶点及对称轴,结合抛物线的开口方向逐一判断.【详解】因为y=2(x﹣3)2+1是抛物线的顶点式,顶点坐标为(3,1),①对称轴为x=3,当x>3时,y随x的增大而增大,故①正确;②,故②错误;③顶点坐标为(3,1),故③错误;④∵a=1>0,∴开口向上,故④正确.故答案为:①④.【点睛】本题考查了二次函数的性质以及函数的单调性和求抛物线的顶点坐标、对称轴及最值的方法.熟练掌握二次函数的性质是解题的关键.13、2【分析】由摸到白球的频率稳定在0.6附近得出口袋中得到白色球的概率,进而求出黑球个数即可.【详解】解:设黑球个数为:x个,∵摸到白色球的频率稳定在0.6左右,∴口袋中得到白色球的概率为0.6,∴,解得:x=2,故黑球的个数为2个.故答案为2.【点睛】此题主要考查了利用频率估计概率,根据大量反复试验下频率稳定值即概率得出是解题关键.14、132【解析】试题解析:∵AC是⊙O的切线,∴∠OAC=90°,∵∠C=40°,∴∠AOD=50°,∴AD的长为50π×9180∴BD的长为π×9-52π=考点:1.切线的性质;2.弧长的计算.15、或【分析】先求出点A(-4,0),B(0,-3),利用勾股定理得到AB=5,过点P作PC⊥AB于点C,则PC=1,证明△PAC∽△BAO,得到,求出PA=,再分点P在点A的左侧和右侧两种情况分别求出OP,即可得到点P的坐标.【详解】令中x=0,得y=-3;令y=0,得x=-4,∴A(-4,0),B(0,-3),∴OA=4,OB=3,∴AB=5,过点P作PC⊥AB于点C,则PC=1,∴∠PCA=∠AOB=90°,∵∠PAC=∠BAO,∴△PAC∽△BAO,∴,∴,∴PA=,当点P在点A左侧时,PO=PA+OA=+4=,∴点P的坐标为(-,0);当点P在点A的右侧时,PO=OA-PA=4-=,∴点P的坐标为(-,0),故答案为:或.【点睛】此题考查一次函数与x轴、y轴的交点坐标,勾股定理,圆的切线的性质定理,相似三角形的判定及性质,解题中注意运用分类讨论的思想.16、【分析】首先对图中各点进行标注,阴影部分的面积等于正方形BEFL的面积减去梯形BENK的面积,再利用相似三角形的性质求出BK、EN的长从而求出梯形的面积即可得出答案.【详解】解:如图所示,∵四边形MEGH为正方形,∴∴△AEN△AHG∴NE:GH=AE:AG∵AE=2+3=5,AG=2+3+4=9,GH=4∴NE:4=5:9∴NE=同理可求BK=梯形BENK的面积:∴阴影部分的面积:故答案为:.【点睛】本题主要考查的知识点是图形面积的计算以及相似三角形判定及其性质,根据相似的性质求出相应的边长是解答本题的关键.17、【分析】根据根的判别式即可求出答案;【详解】解:由题意可知:解得:故答案为:【点睛】本题考查一元二次方程根的判别式,解题的关键是熟练掌握一元二次方程根的判别式并应用.18、【分析】利用已知得出底面圆的半径为,周长为,进而得出母线长,再利用勾股定理进行计算即可得出答案.【详解】解:∵半径为的圆形∴底面圆的半径为∴底面圆的周长为∴扇形的弧长为∴,即圆锥的母线长为∴圆锥的高为.故答案是:【点睛】此题主要考查了圆锥展开图与原图对应情况,以及勾股定理等知识,根据已知得出母线长是解决问题的关键.三、解答题(共66分)19、1【分析】根据平行线分线段比例定理得到,即,解得EF=1.【详解】解:∵AD∥BE∥CF,∴,∵=,DE=6,∴,∴EF=1.【点睛】本题的考点是平行线分线段成比例.方法是根据已知条件列出相应的比例式,算出答案即可.20、(1)当球运行的水平距离为时,达到最大高度为;(2)球出手时,他跳离地面3.2.【分析】(1)根据待定系数法,即可求解;(2)令时,则,进而即可求出答案.【详解】(1)依题意得:抛物线经过点和,∴,解得:,∴,∴当球运行的水平距离为时,达到最大高度为;(2)∵时,,∴,即球出手时,他跳离地面3.2.【点睛】本题主要考查二次函数的实际应用,掌握二次函数的图象和性质,是解题的关键.21、(1)证明见解析;(2)2;(3).【分析】(1)连接OH、OM,易证OH是△ABC的中位线,利用中位线的性质可证明△COH≌△MOH,所以∠HCO=∠HMO=90°,从而可知MH是⊙O的切线;(2)由切线长定理可知:MH=HC,再由点M是AC的中点可知AC=3,由tan∠ABC=,所以BC=4,从而可知⊙O的半径为2;(3)连接CN,AO,CN与AO相交于I,由AC、AN是⊙O的切线可知AO⊥CN,利用等面积可求出可求得CI的长度,设CE为x,然后利用勾股定理可求得CE的长度,利用垂径定理即可求得NQ.【详解】解:(1)连接OH、OM,∵H是AC的中点,O是BC的中点∴OH是△ABC的中位线∴OH∥AB,∴∠COH=∠ABC,∠MOH=∠OMB又∵OB=OM,∴∠OMB=∠MBO∴∠COH=∠MOH,在△COH与△MOH中,∵OC=OM,∠COH=∠MOH,OH=OH∴△COH≌△MOH(SAS)∴∠HCO=∠HMO=90°∴MH是⊙O的切线;(2)∵MH、AC是⊙O的切线∴HC=MH=∴AC=2HC=3∵tan∠ABC=,∴=∴BC=4∴⊙O的半径为2;(3)连接OA、CN、ON,OA与CN相交于点I∵AC与AN都是⊙O的切线∴AC=AN,AO平分∠CAD∴AO⊥CN∵AC=3,OC=2∴由勾股定理可求得:AO=∵AC•OC=AO•CI,∴CI=∴由垂径定理可求得:CN=设OE=x,由勾股定理可得:∴,∴x=,∴CE=,由勾股定理可求得:EN=,∴由垂径定理可知:NQ=2EN=.22、(1)80人(2)见解析(3)375【分析】(1)根据条形统计图和扇形统计图可知,选择文学鉴赏的学生16人,占总体的20%,从而可以求得调查的学生总人数;(2)根据3D打印的百分比和(1)中求得的调查的学生数,可以求得选择3D打印的有多少人,进而可以求得选择数学思维的多少人,从而可以将条形统计图补充完整;(3)根据调查的选择红船课程的学生所占的百分比,即可估算出全校选择体育类的学生人数.【详解】解:(1)16÷20%=80人;(2)如图所示;(3)=375(人).【点睛】本题考查了条形统计图、样本估计总体、扇形统计图,解题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答问题.23、【分析】由三角形面积和边长可求出对应边的高,再由勾股定理求出余弦所需要的边长即可解答.【详解】解:过点点作于点,∵的面积,∴,在中,由勾股定理得,所以【点睛】本题考查了解直角三角形,掌握余弦的定义(余弦=邻边:斜边)和用面积求高是解题的关键.24、(1)详见解析;(2)1.【分析】(1)连接OC,根据切线的性质得到∠OCM=90°,得到OC∥AD,根据平行线的性质、等腰三角形的性质证明结论;(2)连接BC,连接BE交OC于点F,根据勾股定理求出
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 烟台大学《汉语史专题》2022-2023学年第一学期期末试卷
- 环境清洁消毒培训
- 2015 SDF-2015-0001《山东省新建商品房买卖合同(预售)示范文本》
- 46.广州市商品房买卖合同示范文本(预售)
- 勇往直前上学期间保证书篇
- 第三方担保合同协议的双方履行条件
- 防水工程保险费协议
- 确定位置的坐标
- 四年级语文学习好词好句宝典
- 外研社版英语三年级下册教辅
- 超声切割止血刀技术参数
- 制氢站OSH危害辨识与危险控制措施
- 三级医院呼吸学科医疗服务能力指南(2020年版)
- 2022年保险基础知识电子版
- GB/T 42306-2023软木粒和软木粉分类、性质和包装
- 营销课件第四章stp战略
- GB/T 30146-2023安全与韧性业务连续性管理体系要求
- 泉州市《刺桐杯》奖(优质工程)评审办法【范本模板】
- 中学300米塑胶运动场建设项目初步设计
- “西学中”培训班《中医基础理论》试题及答案
- 湘少版英语六年级上册英语单词竞赛
评论
0/150
提交评论