2022年浙江省金华市兰溪市数学八年级上册期末经典试题含解析_第1页
2022年浙江省金华市兰溪市数学八年级上册期末经典试题含解析_第2页
2022年浙江省金华市兰溪市数学八年级上册期末经典试题含解析_第3页
2022年浙江省金华市兰溪市数学八年级上册期末经典试题含解析_第4页
2022年浙江省金华市兰溪市数学八年级上册期末经典试题含解析_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年八上数学期末模拟试卷考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每题4分,共48分)1.如果把分式中的和都扩大2倍,则分式的值()A.扩大4倍 B.扩大2倍 C.不变 D.缩小2倍2.下列说法中正确的是()A.的值是±5 B.两个无理数的和仍是无理数C.-3没有立方根. D.是最简二次根式.3.若(x+m)(x2-3x+n)的展开式中不含x2和x项,则m,n的值分别为()A.m=3,n=1 B.m=3,n=-9 C.m=3,n=9 D.m=-3,n=94.下列运算正确的是()A.=±4 B.(ab2)3=a3b6C.a6÷a2=a3 D.(a﹣b)2=a2﹣b25.如图,将一张含有角的三角形纸片的两个顶点放在直尺的两条对边上,若,则的度数是()A. B. C. D.6.函数y=ax﹣a的大致图象是()A. B. C. D.7.下列命题:①如果,那么;②有公共顶点的两个角是对顶角;③两直线平行,同旁内角互补;④平行于同一条直线的两条直线平行.其中是真命题的个数有()A.1 B.2 C.3 D.48.要使二次根式有意义,字母x必须满足的条件是()A.x≤2 B.x<2 C.x≤-2 D.x<-29.下列语句正确的是()A.4是16的算术平方根,即±=4B.﹣3是27的立方根C.的立方根是2D.1的立方根是﹣110.如图,从边长为()cm的正方形纸片中剪去一个边长为()cm的正方形(),剩余部分沿虚线又剪拼成一个矩形(不重叠无缝隙),则矩形的面积为()A. B. C. D.11.下列计算正确的是()A.m3•m2•m=m5 B.(m4)3=m7 C.(﹣2m)2=4m2 D.m0=012.如果m是的整数部分,则m的值为()A.1 B.2 C.3 D.4二、填空题(每题4分,共24分)13.一个多边形的内角和是外角和的倍,那么这个多边形的边数为_______.14.如图,A.B两点在正方形网格的格点上,每个方格都是边长为1的正方形、点C也在格点上,且△ABC为等腰三角形,则符合条件的点C共有______个.15.是方程2x-ay=5的一个解,则a=____.16.如图,在中,,,,为的中点,为线段上任意一点(不与端点重合),当点在线段上运动时,则的最小值为__________.17.如图,AD、BE是△ABC的两条中线,则S△EDC:S△ABD=______.18.已知实数、在数轴上的位置如图所示,化简=_____________三、解答题(共78分)19.(8分)先化简,再求值:,其中m=9.20.(8分)甲、乙两人在笔直的湖边公路上同起点、同终点、同方向匀速步行2400米,先到终点的人原地休息.已知甲先出发4分钟,在整个步行过程中,甲、乙两人间的距离y(米)与甲出发的时间x(分)之间的关系如图中折线OA-AB-BC-CD所示.(1)求线段AB的表达式,并写出自变量x的取值范围;(2)求乙的步行速度;(3)求乙比甲早几分钟到达终点?21.(8分)如图,∠ACB=90∘,∠A=35∘,∠BCD=22.(10分)如图,在平面直角坐标系中,A(﹣3,3),B(﹣1,﹣1)在y轴上画出一个点P,使PA+PB最小,并写出点P的坐标.23.(10分)山地自行车越来越受中学生的喜爱.一网店经营的一个型号山地自行车,今年一月份销售额为30000元,二月份每辆车售价比一月份每辆车售价降价100元,若销售的数量与上一月销售的数量相同,则销售额是27000元.(1)求二月份每辆车售价是多少元?(2)为了促销,三月份每辆车售价比二月份每辆车售价降低了10%销售,网店仍可获利35%,求每辆山地自行车的进价是多少元?24.(10分)某中学开展“数学史”知识竞赛活动,八年级(1)、(2)班根据初赛成绩,各选出5名选手参加复赛,两个班各选出的5名选手的复赛成绩(满分为100分)如图所示.(1)请计算八(1)班、八(2)班两个班选出的5名选手复赛的平均成绩;(2)请判断哪个班选出的5名选手的复赛成绩比较稳定,并说明理由?25.(12分)阅读下列解题过程,并解答下列问题.(1)观察上面的解题过程,请直接写出式子(2)计算:26.水龙头关闭不紧会造成滴水,小明用可以显示水量的容器做图①所示的试验,并根据试验数据绘制出图②所示的容器内盛水量W(L)与滴水时间t(h)的函数关系图象,请结合图象解答下列问题:(1)容器内原有水多少?(2)求W与t之间的函数关系式,并计算在这种滴水状态下一天的滴水量是多少升?图①图②

参考答案一、选择题(每题4分,共48分)1、B【分析】根据题意要求将和都扩大2倍,然后将得出来的结果与原分式进行比较即可得出答案.【详解】把分式中的和都扩大2倍得∴分式的值扩大2倍故选:B.【点睛】本题主要考查分式的基本性质,掌握分式的基本性质是解题的关键.2、D【分析】根据算术平方根和平方根的概念,无理数的概念立方根的概念,和二次根式的概念逐一判断即可.【详解】,故A选项错误;,故B选项错误;-3的立方根为,故C选项错误;是最简二次根式,故D选项正确;故选D.【点睛】本题考查了算术平方根和平方根的区别,无理数、二次根式和立方根的概念,题目较为综合,熟练掌握相关概念是本题的关键.3、C【解析】根据多项式与多项式的乘法法则展开后,将含x2与x的进行合并同类项,然后令其系数为0即可.【详解】原式=x3-3x2+nx+mx2-3mx+mn=x3-3x2+mx2+nx-3mx+mn=x3+(m-3)x2+(n-3m)x+mn∵(x+m)(x2-3x+n)的展开式中不含x2和x项∴m-3=0,n-3m=0∴m=3,n=9故选C.【点睛】本题考查多项式乘以多项式的运算法则,解题的关键是先将原式展开,然后将含x2与x的进行合并同类项,然后令其系数为0即可.4、B【分析】分别根据算术平方根的定义,积的乘方运算法则,同底数幂的除法法则以及完全平方公式逐一判断即可.【详解】A.,故本选项不合题意;B.(ab2)3=a3b6,正确;C.a6÷a2=a4,故本选项不合题意;D.(a﹣b)2=a2﹣2ab+b2,故本选项不合题意.故选:B.【点睛】本题主要考查了算术平方根,幂的乘方与积的乘方,同底数幂的除法以及完全平方公式,熟记相关运算法则是解答本题的关键.5、C【分析】利用平行线的性质,三角形的外角的性质解决问题即可;【详解】解:如图,∵AB∥CD,∴∠3=∠2,∴∠3=∠1+30°,∵∠1=20°,∴∠3=∠2=50°;故选:C.【点睛】本题主要考查平行线的性质,三角形的外角等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.6、C【解析】将y=ax-a化为y=a(x-1),可知图像过点(1,0),进行判断可得答案.【详解】解:一次函数y=ax-a=a(x-1)过定点(1,0),而选项A、B、D中的图象都不过点(1,0),所以C项图象正确.故本题正确答案为C.【点睛】本题主要考查一次函数的图象和一次函数的性质.7、B【分析】利用等式的性质、对顶角的定义、平形线的判定及性质分别判断后即可确定正确的选项.【详解】如果,那么互为相反数或,①是假命题;有公共顶点的两个角不一定是对顶角,②是假命题;两直线平行,同旁内角互补,由平行公理的推论知,③是真命题;

平行于同一条直线的两条直线平行,由平行线的性质知,④是真命题.综上,真命题有2个,故选:B.【点睛】本题主要考查命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.8、A【解析】∵要使二次根式有意义,∴2-x≥0,∴x≤2.故选A.9、C【分析】根据正数的立方根是正数、负数的立方根是负数和算术平方根的概念解答即可.【详解】解:A、4是16的算术平方根,即=4,故A错误;B、﹣3是﹣27的立方根,故B错误;C、=8,8的立方根是2,故C正确;D、1的立方根是1,故D错误.故选:C.【点睛】本题考查平方根和立方根的概念,解题的关键是熟练理解立方根的概念:如果一个数x的立方等于a,即x的三次方等于a(x3=a),那么这个数x就叫做a的立方根.10、D【分析】利用大正方形的面积减去小正方形的面积即可,注意完全平方公式的计算.【详解】矩形的面积为:(a+4)2-(a+1)2=(a2+8a+16)-(a2+2a+1)=a2+8a+16-a2-2a-1=6a+1.故选D.11、C【分析】根据幂的乘方与积的乘方,同底数幂的乘法的运算方法,以及零指数幂的运算方法,逐项判断即可.【详解】解:∵m3•m2•m=m6,∴选项A不符合题意;∵(m4)3=m12,∴选项B不符合题意;∵(﹣2m)2=4m2,∴选项C符合题意;∵m0=1,∴选项D不符合题意.故选:C.【点睛】本题考查了幂的乘方与积的乘方,同底数幂的乘法的运算方法,以及零指数幂的运算方法,掌握运算法则是解题关键.12、C【分析】找到所求的无理数在哪两个和它接近的整数之间,即可得出所求的无理数的整数部分.【详解】解:∵9<15<16,∴3<<4,∴m=3,故选:C.【点睛】此题主要考查了无理数的估算能力,现实生活中经常需要估算,估算应是我们具备的数学能力,“夹逼法”是估算的一般方法,也是常用方法.二、填空题(每题4分,共24分)13、1【分析】根据多边形的内角和公式(n-2)•180°与外角和定理列出方程,然后求解即可.【详解】解:设这个多边形是n边形,根据题意得,(n-2)•180°=×360°,解得:n=1.故答案为:1.【点睛】本题考查了多边形的内角和公式与外角和定理,多边形的外角和与边数无关,任何多边形的外角和都是360°.14、9【解析】根据已知条件,可知按照点C所在的直线分两种情况:①点C以点A为标准,AB为底边;②点C以点B为标准,AB为等腰三角形的一条边.解:①点C以点A为标准,AB为底边,符合点C的有5个;②点C以点B为标准,AB为等腰三角形的一条边,符合点C的有4个.所以符合条件的点C共有9个.此题考查了等腰三角形的判定来解决特殊的实际问题,其关键是根据题意,结合图形,再利用数学知识来求解.注意数形结合的解题思想.15、-1【解析】试题解析:把代入方程2x-ay=5,得:4-a=5,解得:a=-1.16、【分析】本题为拔高题,过点C作AB的垂线交AB于点F,可以根据直角三角形中30°角的特性,得出EF与关系,最后得到,可知当DE-EF为0时,有最小值.【详解】过点C作AB的垂线交AB于点F,得到图形如下:根据直角三角形中30°角的特性,可知由此可知故可知,当DE与EF重合时,两条线之间的差值为0,故则的最小值为.【点睛】本题属于拔高题,类似于“胡不归”问题,综合性强,是对动点最值问题的全面考察,是中学应该掌握的内容.17、1:1.【分析】根据三角形中位线定理得到DE∥AB,DEAB,根据相似三角形的性质得到()1,根据三角形的面积公式计算,得到答案.【详解】∵AD、BE是△ABC的两条中线,∴DE∥AB,DEAB,∴△EDC∽△ABC,∴()1,∵AD是△ABC的中线,∴,∴S△EDC:S△ABD=1:1.故答案为:1:1.【点睛】本题考查的是三角形中位线定理、相似三角形的判定和性质、三角形的面积计算,掌握三角形的中位线平行于第三边,且等于第三边的一半是解题的关键.18、【分析】先根据数轴的定义可得,从而可得,再化简绝对值和二次根式,然后计算整式的加减即可得.【详解】由数轴的定义得:,则,因此,,,故答案为:.【点睛】本题考查了数轴、绝对值、二次根式、整式的加减,熟练掌握数轴的定义是解题关键.三、解答题(共78分)19、【解析】试题分析:原式可以化为,当时,原式考点:完全平方公式、平方差公式的计算点评:本题考查的是完全平方公式、平方差公式的简单运算规律20、(1);(2)80米/分;(3)6分钟【分析】(1)根据图示,设线段AB的表达式为:y=kx+b,把把(4,240),(16,0)代入得到关于k,b的二元一次方程组,解之,即可得到答案,

(2)根据线段OA,求出甲的速度,根据图示可知:乙在点B处追上甲,根据速度=路程÷时间,计算求值即可,

(3)根据图示,求出二者相遇时与出发点的距离,进而求出与终点的距离,结合(2)的结果,分别计算出相遇后,到达终点甲和乙所用的时间,二者的时间差即可所求答案.【详解】(1)根据题意得:

设线段AB的表达式为:y=kx+b(4≤x≤16),

把(4,240),(16,0)代入得:,

解得:,

即线段AB的表达式为:y=-20x+320(4≤x≤16),

(2)又线段OA可知:甲的速度为:=60(米/分),

乙的步行速度为:=80(米/分),

答:乙的步行速度为80米/分,

(3)在B处甲乙相遇时,与出发点的距离为:240+(16-4)×60=960(米),

与终点的距离为:2400-960=1440(米),

相遇后,到达终点甲所用的时间为:=24(分),

相遇后,到达终点乙所用的时间为:=18(分),

24-18=6(分),

答:乙比甲早6分钟到达终点.【点睛】本题考查了一次函数的应用,正确掌握分析函数图象是解题的关键.21、见解析.【解析】想办法证明∠BCD=∠B即可解决问题.【详解】证明:∵∠ACB=∴∠A+∠B=∵∠A=∴∠B=∵∠BCD=∴∠B=∠BCD∴CD∥AB.【点睛】本题考查平行线的判定,方向角等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.22、点P的坐标(0,0)【分析】先作出点A关于y轴的对称点C,然后连接BC,求出BC的解析式,最后求出与y轴的交点即可.【详解】解:∵A(﹣3,3),∴点A关于y轴对称的点C(3,3),连接BC交y轴于P,则PA+PB最小,设直线BC的解析式为:y=kx+b,∴,解得:,∴直线BC的解析式为:y=x,∴点P的坐标(0,0).【点睛】本题主要考察了作图,解题的关键是掌握轴对称变换的性质,并且能正确得出变换后对应的点.23、(1)二月份每辆车售价是900元;(2)每辆山地自行车的进价是600元.【解析】(1)设二月份每辆车售价为x元,则一月份每辆车售价为(x+100)元,根据数量=总价÷单价,即可得出关于x的分式方程,解之经检验后即可得出结论;(2)设每辆山地自行车的进价为y元,根据利润=售价﹣进价,即可得出关于y的一元一次方程,解之即可得出结论.【详解】(1)设二月份每辆车售价为x元,则一月份每辆车售价为(x+100)元,根据题意得:,解得:x=900,经检验,x=900是原分式方程的解,答:二月份每辆车售价是900元;(2)设每辆山地自行车的进价为y元,根据题意得:900×(1﹣10%)﹣y=35%y,解得:y=600,答:每辆山地自行车的进价是600元.【点睛】本题考查了分式方程的应用、一元一次方程的应用,弄清题意,找准等量关系列出方程是解题的关键.24、(1)八(1)班和八(2)班两个班选出的5名选手复赛的平均成绩均为85分;(2)八(1)班的成绩比较稳定,见解析【分析】(1)根据算术平均数的概念求解可得;(2)先计算出两个班的方差,再根据方差的意义求解可得.【详解】(1)=(75+80+85+85+100)=85(分),=(70+100+100+75+80)=85(分),所以,八(1)班和八(2)班两个班选出的5名选手复赛的平均成绩均为85分.(2)八

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论