下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年九上数学期末模拟试卷考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题(每小题3分,共30分)1.关于x的一元二次方程ax2﹣4x+1=0有实数根,则整数a的最大值是()A.1 B.﹣4 C.3 D.42.若关于的方程有两个不相等的实数根,则的取值范围是()A. B. C. D.3.某微生物的直径为0.000005035m,用科学记数法表示该数为()A.5.035×10﹣6 B.50.35×10﹣5 C.5.035×106 D.5.035×10﹣54.不等式的解集是()A. B. C. D.5.已知关于x的一元二次方程xaxb0ab的两个根为x1、x2,x1x2则实数a、b、x1、x2的大小关系为()A.ax1bx2 B.ax1x2b C.x1ax2b D.x1abx26.如图,为测量一棵与地面垂直的树OA的高度,在距离树的底端30米的B处,测得树顶A的仰角∠ABO为α,则树OA的高度为()A.米 B.30sinα米 C.30tanα米 D.30cosα米7.下列各数中是无理数的是()A.0 B. C. D.0.58.如图,现有两个相同的转盘,其中一个分为红、黄两个相等的区域,另一个分为红、黄、蓝三个相等的区域,随即转动两个转盘,转盘停止后指针指向相同颜色的概率为()A. B. C. D.9.如图,在矩形COED中,点D的坐标是(1,3),则CE的长是()A.3 B. C. D.410.如图,在矩形中,在上,,交于,连结,则图中与一定相似的三角形是A. B. C. D.和二、填空题(每小题3分,共24分)11.某个周末小月和小华在南滨路跑步锻炼身体,两人同时从A点出发,沿直线跑到B点后马上掉头原路返回A点算一个来回,回到A点后又马上调头去往B点,以此类推,每人要完成2个来回。一直两人全程均保持匀速,掉头时间忽略不计。如图所示是小华从出发到他率先完成第一个来回为止,两人到B点的距离之和y(米)与小华跑步时间x(分钟)之间的函数图像,则当小华跑完2个来回时,小月离B点的距离为___米.12.如图所示,四边形ABCD中,∠B=90°,AB=2,CD=8,AC⊥CD,若sin∠ACB=,则cos∠ADC=______.13.古希腊数学家把数1,3,6,10,15,21,…叫做三角形数,它有一定的规律性,若把第一个三角形数记为x1,第二个三角形数记为x2,…第n个三角形数记为xn,则xn+xn+1=.14.如图,在中,已知依次连接的三边中点,得,再依次连接的三边中点得,···,则的周长为_____________________.15.若关于x的方程kx2+2x﹣1=0有实数根,则k的取值范围是_____.16.设、是一元二次方程的两实数根,则的值为_________17.二次函数的图像经过原点,则a的值是______.18.从长度分别是,,,的四根木条中,抽出其中三根能组成三角形的概率是______.三、解答题(共66分)19.(10分)如图,在等腰直角三角形ABC中,D是AB的中点,E,F分别是AC,BC.上的点(点E不与端点A,C重合),且连接EF并取EF的中点O,连接DO并延长至点G,使,连接DE,DF,GE,GF(1)求证:四边形EDFG是正方形;(2)直接写出当点E在什么位置时,四边形EDFG的面积最小?最小值是多少?20.(6分)如图,把Rt△ABC绕点A.逆时针旋转40°,得到在Rt△ABʹCʹ,点Cʹ恰好落在边AB上,连接BBʹ,求∠BBʹCʹ的度数.21.(6分)如图1是实验室中的一种摆动装置,在地面上,支架是底边为的等腰直角三角形,摆动臂长可绕点旋转,摆动臂可绕点旋转,,.(1)在旋转过程中:①当三点在同一直线上时,求的长;②当三点在同一直角三角形的顶点时,求的长.(2)若摆动臂顺时针旋转,点的位置由外的点转到其内的点处,连结,如图2,此时,,求的长.22.(8分)已知A(n,-2),B(1,4)是一次函数y=kx+b的图象和反比例函数y=的图象的两个交点,直线AB与y轴交于点C.(1)求反比例函数和一次函数的关系式;(2)求△AOC的面积;(3)求不等式kx+b-<0的解集(直接写出答案).23.(8分)如图,AB为⊙O的直径,PD切⊙O于点C,交AB的延长线于点D,且∠D=2∠CAD.(1)求∠D的度数;(2)若CD=2,求BD的长.24.(8分)我国互联网发展走到了世界的前列,尤其是电子商务,据市场调查,天猫超市在销售一种进价为每件40元的护眼台灯中发现:每月销售量y(件)与销售单价x(元)之间的函数关系如图所示:(1)当销售单价定为50元时,求每月的销售件数;(2)设每月获得的利润为W(元),求利润的最大值;(3)由于市场竞争激烈,这种护眼灯的销售单价不得高于75元,如果要每月获得的利润不低于8000元,那么每月的成本最少需要多少元?(成本=进价×销售量)25.(10分)如图,在中,,,,平分交于点,过点作交于点,点是线段上的动点,连结并延长分别交,于点、.(1)求的长.(2)若点是线段的中点,求的值.(3)请问当的长满足什么条件时,在线段上恰好只有一点,使得?26.(10分)如图,已知线段,于点,且,是射线上一动点,,分别是,的中点,过点,,的圆与的另一交点(点在线段上),连结,.(1)当时,求的度数;(2)求证:;(3)在点的运动过程中,当时,取四边形一边的两端点和线段上一点,若以这三点为顶点的三角形是直角三角形,且为锐角顶点,求所有满足条件的的值.
参考答案一、选择题(每小题3分,共30分)1、D【分析】根据根的判别式即可求出答案.【详解】由题意可知:△=16﹣4a≥0且a≠0,∴a≤4且a≠0,所以a的最大值为4,故选:D.【点睛】本题考查一元二次方程,解题的关键是熟练运用一元二次方程的解法.2、D【分析】利用一元二次方程的根的判别式列出不等式即可求出k的取值范围.【详解】解:由题意得=(2k+1)2-4(k2-1)=4k+5>0解得:k>-故选D【点睛】此题主要考查了一元二次方程的根的判别式,熟记根的判别式是解题的关键.3、A【解析】试题分析:0.000005035m,用科学记数法表示该数为5.035×10﹣6,故选A.考点:科学记数法—表示较小的数.4、C【解析】移项、合并同类项,系数化为1即可求解.【详解】解:,故选:C.【点睛】考查了解简单不等式的能力,解答这类题学生往往在解题时不注意移项要改变符号这一点而出错.5、D【分析】根据二次函数的图象与性质即可求出答案.【详解】如图,设函数y=(x−a)(x−b),当y=0时,x=a或x=b,当y=时,由题意可知:(x−a)(x−b)−=0(a<b)的两个根为x1、x2,由于抛物线开口向上,由抛物线的图象可知:x1<a<b<x2故选:D.【点睛】本题考查一元二次方程,解题的关键是正确理解一元二次方程与二次函数之间的关系,本题属于中等题型.6、C【解析】试题解析:在Rt△ABO中,∵BO=30米,∠ABO为α,∴AO=BOtanα=30tanα(米).故选C.考点:解直角三角形的应用-仰角俯角问题.7、C【分析】根据无理数的定义,分别进行判断,即可得到答案.【详解】解:根据题意,是无理数;0,,0.5是有理数;故选:C.【点睛】本题考查了无理数的定义,解题的关键是熟记无理数的定义进行解题.8、A【解析】先画树状图展示所有6种等可能的结果数,找出停止后指针指向相同颜色的结果数,然后根据概率公式计算.【详解】画树状图如下:由树状图知,共有6种等可能结果,其中转盘停止后指针指向相同颜色的有2种结果,所以转盘停止后指针指向相同颜色的概率为=,故选:A.【点睛】本题考查了列表法或树状图法:通过列表法或树状图法展示所有等可能的结果求出n,再从中选出符合事件A或B的结果数目m,然后根据概率公式求出事件A或B的概率.9、C【分析】根据勾股定理求得,然后根据矩形的性质得出.【详解】解:∵四边形COED是矩形,∴CE=OD,∵点D的坐标是(1,3),∴,∴,故选:C.【点睛】本题考查的是矩形的性质,两点间的距离公式,掌握矩形的对角线的性质是解题的关键.10、B【解析】试题分析:根据矩形的性质可得∠A=∠D=90°,再由根据同角的余角相等可得∠AEB=∠DFE,即可得到结果.∵矩形∴∠A=∠D=90°∴∠DEF+∠DFE=90°∵∴∠AEB+∠DEF=90°∴∠AEB=∠DFE∵∠A=∠D=90°,∠AEB=∠DFE∴∽故选B.考点:矩形的性质,相似三角形的判定点评:相似三角形的判定和性质是初中数学的重点,贯穿于整个初中数学的学习,是中考中半径常见的知识点,一般难度不大,需熟练掌握.二、填空题(每小题3分,共24分)11、1【分析】根据题意和函数图象中的数据可以求得点A和点B之间的距离,再根据图象中的数据可以求得当小华跑完2个米回时,小月离B点的距离,本题得以解决.【详解】解:设A点到B点的距离为S米,小华的速度为a米/分,小月的速度为b米/分,,解得:;则当小华跑完1个来回时,小月离B点的距离为:772-550=222(米),即小华跑完1个来回比小月多跑的路程是:550-222=328(米),故小华跑完2个来回比小月多跑的路程是:328×2=656(米),则当小华跑完2个米回时,小月离B点的距离为:656-550=1(米)故答案为:1.【点睛】本题考查一次函数的应用,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.12、【分析】首先在△ABC中,根据三角函数值计算出AC的长,再利用勾股定理计算出AD的长,然后根据余弦定义可算出cos∠ADC.【详解】解:∵∠B=90°,sin∠ACB=,∴=,∵AB=2,∴AC=6,∵AC⊥CD,∴∠ACD=90°,∴AD===10,∴cos∠ADC==.故答案为:.【点睛】本题考查了解直角三角形,以及勾股定理的应用,关键是利用三角函数值计算出AC的长,再利用勾股定理计算出AD的长.13、.【分析】根据三角形数得到x1=1,x1=3=1+1,x3=6=1+1+3,x4=10=1+1+3+4,x5=15=1+1+3+4+5,即三角形数为从1到它的顺号数之间所有整数的和,即xn=1+1+3+…+n=、xn+1=,然后计算xn+xn+1可得.【详解】∵x1=1,
x1═3=1+1,
x3=6=1+1+3,
x4═10=1+1+3+4,
x5═15=1+1+3+4+5,
…
∴xn=1+1+3+…+n=,xn+1=,
则xn+xn+1=+=(n+1)1,
故答案为:(n+1)1.14、【分析】根据三角形的中位线定理得:A2B2=A1B1、B2C2=B1C1、C2A2=C1A1,则△A2B2C2的周长等于△A1B1C1的周长的一半,以此类推可求出△A5B5C5的周长为△A1B1C1的周长的.【详解】解:∵A2B2=A1B1、B2C2=B1C1、C2A2=C1A1,∴△A5B5C5的周长为△A1B1C1的周长的,∴△A5B5C5的周长为(7+4+5)×=1.故答案为1.【点睛】本题主要考查了三角形的中位线定理,灵活运用三角形的中位线定理并归纳规律是解答本题的关键.15、k≥-1【解析】首先讨论当时,方程是一元一次方程,有实数根,当时,利用根的判别式△=b2-4ac=4+4k≥0,两者结合得出答案即可.【详解】当时,方程是一元一次方程:,方程有实数根;当时,方程是一元二次方程,解得:且.综上所述,关于的方程有实数根,则的取值范围是.故答案为【点睛】考查一元二次方程根的判别式,注意分类讨论思想在解题中的应用,不要忽略这种情况.16、27【详解】解:根据一元二次方程根与系数的关系,可知+=5,·=-1,因此可知=-2=25+2=27.故答案为27.【点睛】此题主要考查了一元二次方程根与系数的关系,解题时灵活运用根与系数的关系:,,确定系数a,b,c的值代入求解,然后再通过完全平方式变形解答即可.17、1【分析】根据题意将(0,0)代入二次函数,即可得出a的值.【详解】解:∵二次函数的图象经过原点,∴=0,∴a=±1,∵a+1≠0,∴a≠-1,∴a的值为1.故答案为:1.【点睛】本题考查二次函数图象上点的特征,图象过原点,可得出x=0,y=0,从而分析求值.18、【分析】四根木条中,抽出其中三根的组合有4种,计算出能组成三角形的组合,利用概率公式进行求解即可.【详解】解:能组成三角形的组合有:4,8,10;4,10,12;8,10,12三种情况,故抽出其中三根能组成三角形的概率是.【点睛】本题考查了列举法求概率,如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=,构成三角形的基本要求为两小边之和大于最大边.三、解答题(共66分)19、(1)详见解析;(2)当点E为线段AC的中点时,四边形EDFG的面积最小,该最小值为4【解析】(1)连接CD,根据等腰直角三角形的性质可得出∠A=∠DCF=45°、AD=CD,结合AE=CF可证出△ADE≌△CDF(SAS),根据全等三角形的性质可得出DE=DF、ADE=∠CDF,通过角的计算可得出∠EDF=90°,再根据O为EF的中点、GO=OD,即可得出GD⊥EF,且GD=2OD=EF,由此即可证出四边形EDFG是正方形;(2)过点D作DE′⊥AC于E′,根据等腰直角三角形的性质可得出DE′的长度,从而得出2≤DE<2,再根据正方形的面积公式即可得出四边形EDFG的面积的最小值.【详解】(1)证明:连接CD,如图1所示.∵为等腰直角三角形,,D是AB的中点,∴在和中,∴,∴,∵,∴,∴为等腰直角三角形.∵O为EF的中点,,∴,且,∴四边形EDFG是正方形;(2)解:过点D作于E′,如图2所示.∵为等腰直角三角形,,∴,点E′为AC的中点,∴(点E与点E′重合时取等号).∴∴当点E为线段AC的中点时,四边形EDFG的面积最小,该最小值为4【点睛】本题考查了正方形的判定与性质、等腰直角三角形以及全等三角形的判定与性质,解题的关键是:(1)找出GD⊥EF且GD=EF;(2)根据正方形的面积公式找出4≤S四边形EDFG<1.20、20°【分析】利用旋转的性质及等腰三角形的性质可得∠ABBʹ,再根据直角三角形两锐角互余可得解.【详解】解:由旋转可知:∠BABʹ=40°,AB=ABʹ.∴∠ABBʹ=∠ABʹB.∴∠ABBʹ==70°.∴∠BBʹCʹ=90°-70°=20°.【点睛】本题考查了三角形的旋转,灵活利用旋转对应边相等,对应角相等且等于旋转角的性质是解题的关键.21、(1)①,或;②或;(2).【分析】(1)①分两种情形分别求解即可.②显然∠MAD不能为直角.当∠AMD为直角时,根据AM2=AD2-DM2,计算即可,当∠ADM=90°时,根据AM2=AD2+DM2,计算即可.(2)连接CD.首先利用勾股定理求出CD1,再利用全等三角形的性质证明BD2=CD1即可.【详解】(1)①,或.②显然不能为直角,当为直角时,,∴.当为直角时,,∴.(2)连结,由题意得,,∴,,又∵,∴,∴.∵,∴,即.又∵,,∴,∴.【点睛】本题属于四边形综合题,考查了等腰直角三角形的性质,勾股定理,全等三角形的判定和性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题.22、(1)反比例函数关系式:;一次函数关系式:y=1x+1;(1)3;(3)x<-1或0<x<1.【分析】(1)由B点在反比例函数y=上,可求出m,再由A点在函数图象上,由待定系数法求出函数解析式;(1)由上问求出的函数解析式联立方程求出A,B,C三点的坐标,从而求出△AOC的面积;(3)由图象观察函数y=的图象在一次函数y=kx+b图象的上方,对应的x的范围.【详解】解:(1)∵B(1,4)在反比例函数y=上,∴m=4,又∵A(n,-1)在反比例函数y=的图象上,∴n=-1,又∵A(-1,-1),B(1,4)是一次函数y=kx+b的上的点,联立方程组解得,k=1,b=1,∴y=,y=1x+1;(1)过点A作AD⊥CD,∵一次函数y=kx+b的图象和反比例函数y=的图象的两个交点为A,B,联立方程组解得,A(-1,-1),B(1,4),C(0,1),∴AD=1,CO=1,∴△AOC的面积为:S=AD•CO=×1×1=1;(3)由图象知:当0<x<1和-1<x<0时函数y=的图象在一次函数y=kx+b图象的上方,∴不等式kx+b-<0的解集为:0<x<1或x<-1.【点睛】此题考查一次函数和反比例函数的性质及图象,考查用待定系数法求函数的解析式,还间接考查函数的增减性,从而来解不等式.23、(1)45°;(2).【解析】试题分析:(1)根据等腰三角形性质和三角形外角性质求出∠COD=2∠A,求出∠D=∠COD,根据切线性质求出∠OCD=90°,即可求出答案;(2)求出OC=CD=2,根据勾股定理求出BD即可.试题解析:(1)∵OA=OC,∴∠A=∠ACO,∴∠COD=∠A+∠ACO=2∠A,∵∠D=2∠A,∴∠D=∠COD,∵PD切⊙O于C,∴∠OCD=90°,∴∠D=∠COD=45°;(2)∵∠D=∠COD,CD=2,∴OC=OB=CD=2,在Rt△OCD中,由勾股定理得:22+22=(2+BD)2,解得:BD=.考点:切线的性质24、(1)500件;(2)利润的最大值为1;(3)每月的成本最少需要10000元.【分析】(1)设函数关系式为y=kx+b,把(40,600),(75,250)代入,列方程组即可.(2)根据利润=每件的利润×销售量,列出式子即可.(3)思想列出不等式求出x的取值范围,设成本为S,构建一次函数,利用二次函数的性质即可解决问题.【详解】(1)设函数关系式为y=kx+b,把(40,600),(75,250)代入可得,解得:,∴y=﹣10x+1000,当x=50时,y=﹣10×50+1000=500(件);(2)根据题意得,W=(x﹣40)(﹣10x+1000)=﹣10x2+1400x﹣40000=﹣10(x﹣70)2+1.当x=70时,利润的最大值为1;(3)由题意,解得:60≤x≤75,设成本为S,∴S=40(﹣10x+1000)=﹣400x+40000,∵﹣400<0,∴S随x增大而减小,∴x=75时,S有最小值=10000元,答:每月的成本最少需要10000元.【点睛】本题考查了二次函数、一次函数的实际应用,不等式组的应用等知识,解题的关键是灵活应用这些知识解决问题,属于中考常考题型.25、(1);(2);(3)当或时,满足条件的点只有一个.【解析】(1)由角平分线定义得,在中,根据锐角三角函数正切定义即可求得长.(2)由题意易求得,,由全等三角形判定得,根据全等三角形性质得,根据相似三角形判定得,由相似三角形性质得,将代入即可求得答案.(3)由圆周角定理可得是顶角为120°的等腰三角形,再分情况讨论:①当与相切时,结合题意画出图形,过点作,并延长与交于点,连结,,设半径为,由相似三角形的判定和性质即可求得长;②当经过点时,结合题意画出图形,过点作,设半径为,在中,根据勾股定理求得,再由相似三角形的判定和性质即可求得长;③当经过点时,结合题意画出图形,此时点与点重合,且恰好在点处,由此可得长.【详解】(1)解:∵平分,,∴.在中,(2)解:易得,,.由,得,.∵,∴,∴.由,得,∴∴(3)解:∵,过,,作外接圆,圆心为,∴是顶角为120°的等腰三角形.①当与相切时,如图1,过点作,并延长与交于点,连结,设的半径则,,解得.∴,.易知,可得,则∴.②当经过点时,如图2,过点作,垂足为.设的半径,则.在中,,解得,∴易知,可得③当经过点时,如图3,此时点与点重合,且恰好在点处,可得.综上所述,当或时,满足条件的点只有一个.【点睛】本题属于相似形综合题,考查了相似三角形的判定和性质,解直角三角形,圆周角定理等知识,解题的关键是学会利用参数构建方程解决问题,学会利用特殊位置解决数学问题,属于中考压轴题.2
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 审计总价合同范例
- 工程合同范例单价合同
- 海鲜冷库经销合同范例
- 婚后买房合同范例
- 中考数学一轮考点复习精讲精练专题08 平面直角坐标系与函数概念【考点巩固】(解析版)
- 纺织雇佣合同范例
- 固定兼职合同范例
- 手机订货购销合同范例
- 企业联盟合同范例
- 手机货物买卖合同范例
- 安全生产培训课件
- 养老院安全巡查记录制度
- 2025年建筑公司年度工作总结及2025年计划
- 母婴安全培训课件
- 2024年度三方新能源汽车充电桩运营股权转让协议3篇
- 《人力资源招聘体系》课件
- 模拟集成电路设计知到智慧树章节测试课后答案2024年秋广东工业大学
- 2024年国家工作人员学法用法考试题库及参考答案
- 中国成人心肌炎临床诊断与治疗指南2024解读
- 期末(试题)-2024-2025学年人教PEP版英语六年级上册
- 创新创业创造:职场竞争力密钥智慧树知到期末考试答案章节答案2024年上海对外经贸大学
评论
0/150
提交评论