版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年八上数学期末模拟试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题(每题4分,共48分)1.如图,一副三角板叠在一起,最小锐角的顶点D恰好放在等腰直角三角板的斜边AB上,AC与DE交于点M,如果,则的度数为()A.80 B.85 C.90 D.952.若是完全平方式,则的值为()A.±8 B.或 C. D.3.如图,点在上,且,若要使≌,可补充的条件不能是()A. B.平分 C. D.4.若分式,则的值为()A.1 B.2 C.3 D.45.下面运算结果为的是A. B. C. D.6.在分式中,若,都扩大为原来的2倍,则所得分式的值()A.不变 B.是原来的2倍 C.是原来的4倍 D.无法确定7.若点与点关于轴对称,则的值是()A.-2 B.-1 C.0 D.18.在平面直角坐标系中,已知点A(2,m)和点B(n,-3)关于y轴对称,则的值是()A.-1 B.1 C.5 D.-59.如图,在锐角三角形中,,的平分线交于点,、分别是和上的动点,则的最小值是()A.1 B. C.2 D.10.下列长度的三根小木棒能构成三角形的是()A.2cm,3cm,5cm B.7cm,4cm,2cm C.3cm,4cm,8cm D.3cm,3cm,4cm11.已知为整数,且为正整数,求所有符合条件的的值的和()A.0 B.12 C.10 D.812.如图,∥,点在直线上,且,,那么=()A.45° B.50° C.55° D.60°二、填空题(每题4分,共24分)13.若等腰三角形的一个内角比另一个内角大,则等腰三角形的顶角的度数为________.14.华为的麒麟990芯片采用7nm(1nm=0.000000001m)工艺,用指甲盖的大小集成了多达103亿个晶体管.其中7nm可用科学记数法表示为_____________米.15.如图,在中,有,.点为边的中点.则的取值范围是_______________.16.因式分解:________;________.17.要使分式有意义,的取值应满足_________.18.不等式组的解是____________三、解答题(共78分)19.(8分)解不等式组:,并将解集在数轴上表示出来.20.(8分)如图,在中,平分交于点,点是边上一点,连接,若,求证:.21.(8分)已知,在中,,,,垂足为点,且,连接.(1)如图①,求证:是等边三角形;(2)如图①,若点、分别为,上的点,且,求证:;(3)利用(1)(2)中的结论,思考并解答:如图②,为上一点,连结,当时,线段,,之间有何数量关系,给出证明.22.(10分)先化简,再求值:,其中23.(10分)如图1,在平面直角坐标系中,直线AB与轴交于点A,与轴交于点B,与直线OC:交于点C.(1)若直线AB解析式为,①求点C的坐标;②求△OAC的面积.(2)如图2,作的平分线ON,若AB⊥ON,垂足为E,OA=4,P、Q分别为线段OA、OE上的动点,连结AQ与PQ,试探索AQ+PQ是否存在最小值?若存在,求出这个最小值;若不存在,说明理由.24.(10分)如图,已知直线y=kx+b交x轴于点A,交y轴于点B,直线y=2x﹣4交x轴于点D,与直线AB相交于点C(3,2).(1)根据图象,写出关于x的不等式2x﹣4>kx+b的解集;(2)若点A的坐标为(5,0),求直线AB的解析式;(3)在(2)的条件下,求四边形BODC的面积.25.(12分)已知:如图,AE=CF,AD∥BC,AD=CB.求证:∠B=∠D.26.如图,已知中,,点D在边AB上,满足,(1)求证:;(2)若,且的面积为,试求边AB的长度.
参考答案一、选择题(每题4分,共48分)1、C【分析】先根据平角的概念求出的度数,然后利用三角形内角和定理即可得出答案.【详解】故选:C.【点睛】本题主要考查三角形内角和定理及平角的概念,掌握三角形内角和定理是解题的关键.2、B【分析】利用完全平方公式的结构特征得到关于m的方程,求解即可.【详解】解:∵是完全平方式,∴2(m-1)=±8解得m=5或m=-1.故选:B【点睛】本题考查了完全平方式,熟练掌握完全平方式的特点是解题的关键.3、D【分析】根据全等三角形的判定方法即可依次判断.【详解】A、∵,,∴∠CAB=∠DAB,又AB=AB,根据AAS即可推出≌,正确,故本选项错误;B、平分,∴∠CAB=∠DAB,又AB=AB,根据AAS即可推出≌,正确,故本选项错误;C、∵∠1=∠2,1+∠ABC=180,∠2+∠ABD=180,∴∠ABC=∠ABD,又、AB=AB,根据SAS即可推出≌,正确,故本选项错误;D、根据和AB=AB,∠ABC=∠ABD不能推出≌,错误,故本选项正确;故选:D.【点睛】本题考查了全等三角形的判定,注意:全等三角形的判定定理有SAS,ASA,AAS,SSS.4、D【分析】首先将已知分式通分,得出,代入所求分式,即可得解.【详解】∵∴∴∴=故选:D.【点睛】此题主要考查分式的求值,利用已知分式的值转换形式,即可解题.5、B【解析】根据合并同类项法则、同底数幂的除法、同底数幂的乘法及幂的乘方逐一计算即可判断.【详解】.,此选项不符合题意;.,此选项符合题意;.,此选项不符合题意;.,此选项不符合题意;故选:.【点睛】本题考查了整式的运算,解题的关键是掌握合并同类项法则、同底数幂的除法、同底数幂的乘法及幂的乘方.6、A【分析】根据分式的基本性质:分式的分子和分母同时乘以(除以)同一个不为0的整式,分式的值不发生变化.【详解】解:故选:A.【点睛】本题主要考查的是分式的基本性质,掌握分式的基本性质以及正确的运算是解题的关键.7、D【分析】根据关于y轴的对称点的坐标特点:横坐标互为相反数,纵坐标不变,据此求出m、n的值,代入计算可得.【详解】解:∵点与点关于y轴对称,
∴,,
解得:m=3,,n=−2,
所以m+n=3−2=1,
故选:D.【点睛】本题主要考查关于x、y轴对称的点的坐标,解题的关键是掌握两点关于y轴对称,纵坐标不变,横坐标互为相反数.8、D【分析】利用“关于y轴对称的点,纵坐标相同,横坐标互为相反数”求出m、n的值,然后代入代数式进行计算即可得解.【详解】解:∵A(2,m)和B(n,-3)关于y轴对称,∴m=-3,n=-2,∴m+n=-3-2=-1.故选:D.【点睛】本题考查了关于x轴、y轴对称的点的坐标,解决本题的关键是掌握好对称点的坐标规律:(1)关于x轴对称的点,横坐标相同,纵坐标互为相反数;(2)关于y轴对称的点,纵坐标相同,横坐标互为相反数;(3)关于原点对称的点,横坐标与纵坐标都互为相反数.9、B【分析】通过构造全等三角形,利用三角形的三边的关系确定线段和的最小值.【详解】解:如图,在AC上截取AE=AN,连接BE,
∵∠BAC的平分线交BC于点D,
∴∠EAM=∠NAM,
在△AME与△AMN中,∴△AME≌△AMN(SAS),
∴ME=MN.
∴BM+MN=BM+ME≥BE,
当BE是点B到直线AC的距离时,BE⊥AC,此时BM+MN有最小值,
∵,∠BAC=45°,此时△ABE为等腰直角三角形,
∴BE=,即BE取最小值为,
∴BM+MN的最小值是.
故选:B.【点睛】本题考察了最值问题,能够通过构造全等三角形,把BM+MN进行转化,是解题的关键.10、D【详解】A.因为2+3=5,所以不能构成三角形,故A错误;B.因为2+4<6,所以不能构成三角形,故B错误;C.因为3+4<8,所以不能构成三角形,故C错误;D.因为3+3>4,所以能构成三角形,故D正确.故选D.11、C【分析】先把化简,再根据要求带入符合要求的数,注意检查分母是否为零.【详解】原式===.因为a为整数且为整数,所以分母或,解得a=4,2,6,0,.检验知a=2时原式无意义,应舍去,a的值只能为4,6,0.所以所有符合条件的a的值的和为4+6+0=10.故选C.【点睛】本题考查了分式的计算和化简.解决这类题目关键是把握好通分与约分,分式加减的本质是通分,乘除的本质是约分.同时注意在进行运算前要尽量保证每个分式最简.12、C【解析】根据∥可以推出,根据平角的定义可知:而,∴,∴;∵∴,∴.故应选C.二、填空题(每题4分,共24分)13、80°或40°【分析】根据已知条件,先设出三角形的两个角,然后进行讨论,列方程求解即可.【详解】解:在等腰△ABC中,设∠A=x,∠B=x+30°,分情况讨论:当∠A=∠C为底角时,2x+(x+30°)=180°,解得x=50°,则顶角∠B=80°;当∠B=∠C为底角时,2(x+30°)+x=180°,解得x=40°,即顶角∠A=40°.故这个等腰三角形的顶角的度数为80°或40°.故答案为80°或40°.【点睛】本题考查了等腰三角形的性质及三角形内角和定理;若题目中没有明确顶角或底角的度数,做题时要注意分情况进行讨论,这是十分重要的,也是解答问题的关键.14、7×10-9【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【详解】7nm=0.000000007m=7×10-9m故填:7×10-9.【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.15、【分析】根据题意延长AD至E,使DE=AD,根据三角形中线的定义可得BD=CD,然后利用“边角边”证明△ABD和△ECD全等,根据全等三角形对应边相等可得CE=AB,再根据三角形的任意两边之和大于第三边,任意两边只差小于第三边求出AE,然后求解即可.【详解】解:如图,延长AD至E,使DE=AD,∵AD是△ABC中BC边上的中线,∴BD=CD,在△ABD和△ECD中,∴△ABD≌△ECD(SAS),∴CE=AB=5,∵AC=7,∴5+7=12,7-5=2,∴2<AE<12,∴1<AD<1.故答案为:1<AD<1.【点睛】本题考查全等三角形的判定与性质,三角形的三边关系,“遇中线,加倍延”构造出全等三角形是解题的关键.16、【分析】原式提取,再利用平方差公式分解即可;首先提取公因式,再利用完全平方公式分解因式得出答案.【详解】解:故答案为:;.【点睛】此题主要考查了提取公因式法以及公式法分解因式,熟练应用完全平方公式是解题关键.17、【分析】根据分式的分母不能为0即可得.【详解】由分式的分母不能为0得:解得:故答案为:.【点睛】本题考查了分式有意义的条件:分式的分母不能为0,熟记分式的相关概念及性质是解题关键.18、【分析】根据一元一次不等式组解集的确定方法,即可求解.【详解】由,可得:;故答案是:.【点睛】本题主要考查确定一元一次不等式组的解集,掌握确定一元一次不等式组解集的口诀:“大大取大,小小取小,大小小大取中间,大大小小无解”,是解题的关键.三、解答题(共78分)19、-7<≤1.数轴见解析.【分析】分别求出各不等式的解集,再求出其公共解集,并在数轴上表示出来即可.【详解】解:解不等式①,得≤1解不等式②,得>-7∴不等式组的解集为-7<≤1.在数轴上表示不等式组的解集为故答案为-7<≤1.【点睛】本题考查了解一元一次不等式组,熟知“大大取大,小小取小,大小小大中间找,大大小小找不了“的原则是解此题的关键.20、证明见解析【分析】先求出∠BAC的度数,进而得出∠BAD,因为∠BAD=40°=∠ADE,由“内错角相等,两直线平行”即可判断.【详解】证明:在中,,平分,【点睛】本题考查角的运算,角平分线的性质定理以及平行线的判定,掌握角平分线的性质是解题的关键.21、(1)详见解析;(2)详见解析;(3),理由详见解析.【分析】(1)根据等腰三角形三线合一定理,得到,即可得到结论成立;(2)由(1)得,,然后证明,即可得到结论成立;(3)在上取一点,连接,使.,由(2)得,则,,然后得到,即可得到.【详解】(1)证明:∵,,∴,∵,∴,∵,∴是等边三角形;(2)证明:∵是等边三角形,∴,∵,∴,在与中,∴,∴;(3);理由如下:如图②,在上取一点,连接,使.由(1)(2)可得,∴,在和中∴∴∴;【点睛】本题考查了等边三角形的判定和性质,全等三角形的判定和性质,等腰三角形的性质,等腰三角形三线合一定理,解题的关键是正确作出辅助线,构造全等三角形进行证明.22、-2【解析】试题分析:先化简,再将x的值代入计算即可.试题解析:原式==+1=当x=时,原式==-223、(1)①C(4,4);②12;(2)存在,1【解析】试题分析:(1)①联立两个函数式,求解即可得出交点坐标,即为点C的坐标;②欲求△OAC的面积,结合图形,可知,只要得出点A和点C的坐标即可,点C的坐标已知,利用函数关系式即可求得点A的坐标,代入面积公式即可;(2)在OC上取点M,使OM=OP,连接MQ,易证△POQ≌△MOQ,可推出AQ+PQ=AQ+MQ;若想使得AQ+PQ存在最小值,即使得A、Q、M三点共线,又AB⊥OP,可得∠AEO=∠CEO,即证△AEO≌△CEO(ASA),又OC=OA=4,利用△OAC的面积为6,即可得出AM=1,AQ+PQ存在最小值,最小值为1.(1)①由题意,解得所以C(4,4);②把代入得,,所以A点坐标为(6,0),所以;(2)由题意,在OC上截取OM=OP,连结MQ∵OQ平分∠AOC,∴∠AOQ=∠COQ,又OQ=OQ,∴△POQ≌△MOQ(SAS),∴PQ=MQ,∴AQ+PQ=AQ+MQ,当A、Q、M在同一直线上,且AM⊥OC时,AQ+MQ最小.即AQ+PQ存在最小值.∵AB⊥ON,所以∠AEO=∠CEO,∴△AEO≌△CEO(ASA),∴OC=OA=4,∵△OAC的面积为12,所以AM=12÷4=1,∴AQ+PQ存在最小值,最小值为1.考点:一次函数的综合题点评:本题知识点多,具有一定的综合性,要求学生具备一定的数学解题能力,有一定难度.24、(1)x>3(2)y=-x+5(3)9.5【分析】(1)根据C点坐标结合图象可直接得到答案;(2)利用待定系数法把点A(5,0),C(3,2)代入y=kx+b可得关于k、b得方程组,再解方程组即可;(3)由直线解析式求得点A、点B和点D的坐标,进而根据S四边形BODC=S△AOB-S△ACD进行求解即可得.【详解】(1)根据图象可得不等式2x-4>kx+b的解集为:x>3;(2)把点A(5,0),C(3,2)代入y=kx+b可得:,解得:,所以解析式为:y=-x+5;(3)把x=0代入y=-x+5得:y=5,所以点B(0,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 中考物理复习主题单元7第18课时机械效率课件
- S版六年级上册语文表格式教案
- 《两只小象》教学反思
- 城市建设挖掘机月租赁合同范本
- 医疗器械代发工资承诺书
- 六年级语文上册部分教案
- 水文观测防尘网施工合同
- 石油化工产品进口许可合同模板
- 乐器制造厂聘用合同模板
- 房地产销售投诉处理规范
- 2024年企业业绩对赌协议模板指南
- “全民消防生命至上”主题班会教案(3篇)
- 上海市普陀区2024-2025学年六年级(五四学制)上学期期中语文试题
- 2024黔东南州事业单位第二批遴选人员调减遴选历年高频难、易错点500题模拟试题附带答案详解
- 采伐树木合同模板
- 培训师破冰游戏大全课件
- 2024版成人术中非计划低体温预防与护理培训课件
- 期中测试卷-2024-2025学年统编版语文三年级上册
- 综合素质评价平台建设方案-2024
- 广东省珠海市紫荆中学2025届高二数学第一学期期末达标检测试题含解析
- 2024屋顶分布式光伏场站设备运维规程
评论
0/150
提交评论