2023届新疆阿克苏地区沙雅县数学九年级第一学期期末综合测试模拟试题含解析_第1页
2023届新疆阿克苏地区沙雅县数学九年级第一学期期末综合测试模拟试题含解析_第2页
2023届新疆阿克苏地区沙雅县数学九年级第一学期期末综合测试模拟试题含解析_第3页
2023届新疆阿克苏地区沙雅县数学九年级第一学期期末综合测试模拟试题含解析_第4页
2023届新疆阿克苏地区沙雅县数学九年级第一学期期末综合测试模拟试题含解析_第5页
已阅读5页,还剩23页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年九上数学期末模拟试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题(每题4分,共48分)1.已知抛物线y=ax2+bx+c(b>a>0)与x轴最多有一个交点,现有以下四个结论:①该抛物线的对称轴在y轴左侧;②关于x的方程ax2+bx+c+2=0无实数根;③a﹣b+c≥0;④的最小值为1.其中,正确结论的个数为()A.1个 B.2个 C.1个 D.4个2.抛物线的图像与坐标轴的交点个数是()A.无交点 B.1个 C.2个 D.3个3.在一个不透明的口袋中,装有若干个红球和9个黄球,它们只有颜色不同,摇匀后从中随机摸出一个球,记下颜色后再放回口袋中,通过大量重复摸球试验发现,摸到黄球的频率是0.3,则估计口袋中大约有红球()A.21个 B.14个 C.20个 D.30个4.如图,AB是半圆O的直径,半径OC⊥AB于O,AD平分∠CAB交于点D,连接CD,OD,BD.下列结论中正确的是()A.AC∥OD B.C.△ODE∽△ADO D.5.如图,若A、B、C、D、E,甲、乙、丙、丁都是方格纸中的格点,为使△ABC与△DEF相似,则点F应是甲、乙、丙、丁四点中的().A.甲 B.乙 C.丙 D.丁6.一元二次方程的根的情况是()A.有两个相等的实根 B.有两个不等的实根 C.只有一个实根 D.无实数根7.如图,已知Rt△ABC中,∠C=90°,BC=3,AC=4,则sinA的值为().A. B.C. D.8.下列算式正确的是()A. B. C. D.9.如图,点E、F分别为正方形ABCD的边BC、CD上一点,AC、BD交于点O,且∠EAF=45°,AE,AF分别交对角线BD于点M,N,则有以下结论:①△AOM∽△ADF;②EF=BE+DF;③∠AEB=∠AEF=∠ANM;④S△AEF=2S△AMN,以上结论中,正确的个数有()个.A.1 B.2 C.3 D.410.如图,在△ABC中,AB=6,AC=8,BC=9,将△ABC沿图中的线段剪开,剪下的阴影三角形与原三角形不相似的是()A. B.C. D.11.为落实国务院房地产调控政策,使“居者有其屋”,某市加快了廉租房建设力度年市政府共投资亿元人民币建设廉租房万平方米,预计到年底三年共累计投资亿元人民币建设廉租房,若在这两年内每年投资的增长率都为,可列方程()A. B.C. D.12.下列关于三角形的内心说法正确的是()A.内心是三角形三条角平分线的交点B.内心是三角形三边中垂线的交点C.内心到三角形三个顶点的距离相等D.钝角三角形的内心在三角形外二、填空题(每题4分,共24分)13.若二次函数的图象与x轴的两个交点和顶点构成等边三角形,则称这样的二次函数的图象为标准抛物线.如图,自左至右的一组二次函数的图象T1,T2,T3……是标准抛物线,且顶点都在直线y=x上,T1与x轴交于点A1(2,0),A2(A2在A1右侧),T2与x轴交于点A2,A3,T3与x轴交于点A3,A4,……,则抛物线Tn的函数表达式为_____.14.如图,在平面直角坐标系中有两点和,以原点为位似中心,相似比为,把线段缩短为线段,其中点与点对应,点与点对应,且在y轴右侧,则点的坐标为________.15.等腰三角形一条边的边长为3,它的另两条边的边长是关于x的一元二次方程x2﹣12x+k=0的两个根,则k的值是________.16.如图,在山坡上种树时,要求株距(相邻两树间的水平距离)为6m.测得斜坡的斜面坡度为i=1:(斜面坡度指坡面的铅直高度与水平宽度的比),则斜坡相邻两树间的坡面距离为_____.17.如图,在四边形中,,,,点为边上一点,连接.,与交于点,且,若,,则的长为_______________.18.若反比例函数y=﹣6x的图象经过点A(m,3),则m的值是_____三、解答题(共78分)19.(8分)如图,为测量一条河的宽度,某学习小组在河南岸的点A测得河北岸的树C在点A的北偏东60°方向,然后向东走10米到达B点,测得树C在点B的北偏东30°方向,试根据学习小组的测量数据计算河宽.20.(8分)已知四边形ABCD的四个顶点都在⊙O上,对角线AC和BD交于点E.(1)若∠BAD和∠BCD的度数之比为1:2,求∠BCD的度数;(2)若AB=3,AD=5,∠BAD=60°,点C为劣弧BD的中点,求弦AC的长;(3)若⊙O的半径为1,AC+BD=3,且AC⊥BD.求线段OE的取值范围.21.(8分)如图,在直角三角形△ABC中,∠BAC=90°,点E是斜边BC的中点,圆O经过A、C、E三点,F是弧EC上的一个点,且∠AFC=36°,则∠B=______.22.(10分)学校打算用长米的篱笆围城一个长方形的生物园饲养小兔,生物园的一面靠在长为米的墙上(如图).(1)若生物园的面积为平方米,求生物园的长和宽;(2)能否围城面积为平方米的生物园?若能,求出长和宽;若不能,请说明理由.23.(10分)问题发现:(1)如图1,内接于半径为4的,若,则_______;问题探究:(2)如图2,四边形内接于半径为6的,若,求四边形的面积最大值;解决问题(3)如图3,一块空地由三条直路(线段、AB、)和一条弧形道路围成,点是道路上的一个地铁站口,已知千米,千米,,的半径为1千米,市政府准备将这块空地规划为一个公园,主入口在点处,另外三个入口分别在点、、处,其中点在上,并在公园中修四条慢跑道,即图中的线段、、、,是否存在一种规划方案,使得四条慢跑道总长度(即四边形的周长)最大?若存在,求其最大值;若不存在,说明理由.24.(10分)矩形ABCD中,AB=2,AD=3,O为边AD上一点,以O为圆心,OA为半径r作⊙O,过点B作⊙O的切线BF,F为切点.(1)如图1,当⊙O经过点C时,求⊙O截边BC所得弦MC的长度;(2)如图2,切线BF与边AD相交于点E,当FE=FO时,求r的值;(3)如图3,当⊙O与边CD相切时,切线BF与边CD相交于点H,设△BCH、四边形HFOD、四边形FOAB的面积分别为S1、S2、S3,求的值.25.(12分)如图,宾馆大厅的天花板上挂有一盏吊灯AB,某人从C点测得吊灯顶端A的仰角为,吊灯底端B的仰角为,从C点沿水平方向前进6米到达点D,测得吊灯底端B的仰角为.请根据以上数据求出吊灯AB的长度.(结果精确到0.1米.参考数据:sin35°≈0.57,cos35°≈0.82,tan35°≈0.70,≈1.41,≈1.73)26.如图,BM是以AB为直径的⊙O的切线,B为切点,BC平分∠ABM,弦CD交AB于点E,DE=OE.(1)求证:△ACB是等腰直角三角形;(2)求证:OA2=OE•DC:(3)求tan∠ACD的值.

参考答案一、选择题(每题4分,共48分)1、D【解析】本题考察二次函数的基本性质,一元二次方程根的判别式等知识点.【详解】解:∵,∴抛物线的对称轴<0,∴该抛物线的对称轴在轴左侧,故①正确;∵抛物线与轴最多有一个交点,∴∴关于的方程中∴关于的方程无实数根,故②正确;∵抛物线与轴最多有一个交点,∴当时,≥0正确,故③正确;当时,,故④正确.故选D.【点睛】本题的解题关键是熟悉函数的系数之间的关系,二次函数和一元二次方程的关系,难点是第四问的证明,要考虑到不等式的转化.2、B【分析】已知二次函数的解析式,令x=0,则y=1,故与y轴有一个交点,令y=0,则x无解,故与x轴无交点,题目求的是与坐标轴的交点个数,故得出答案.【详解】解:∵∴令x=0,则y=1,故与y轴有一个交点∵令y=0,则x无解∴与x轴无交点∴与坐标轴的交点个数为1个故选B.【点睛】本题主要考查二次函数与坐标轴的交点,熟练二次函数与x轴和y轴的交点的求法以及仔细审题是解决本题的关键.3、A【分析】在同样条件下,大量反复试验时,随机事件发生的频率逐渐稳定在概率附近,可以从比例关系入手,列出方程求解.【详解】由题意可得:解得:x=21,经检验,x=21是原方程的解故红球约有21个,故选:A.【点睛】此题主要考查了利用频率估计概率,本题利用了用大量试验得到的频率可以估计事件的概率.关键是根据红球的频率得到相应的等量关系.4、A【分析】A.根据等腰三角形的性质和角平分线的性质,利用等量代换求证∠CAD=∠ADO即可;

B.过点E作EF⊥AC,根据角平分线上的点到角的两边的距离相等可得OE=EF,再根据直角三角形斜边大于直角边可证;

C.两三角形中,只有一个公共角的度数相等,其它两角不相等,所以不能证明③△ODE∽△ADO;

D.根据角平分线的性质得出∠CAD=∠BAD,根据在同圆或等圆中,相等的圆周角所对的弦相等,可得CD=BD,又因为CD+BD>BC,又由AC=BC可得AC<2CD,从而可判断D错误.【详解】解:解:A.∵AB是半圆直径,

∴AO=OD,

∴∠OAD=∠ADO,

∵AD平分∠CAB交弧BC于点D,

∴∠CAD=∠DAO=∠CAB,

∴∠CAD=∠ADO,

∴AC∥OD,

∴A正确.

B.如图,过点E作EF⊥AC,

∵OC⊥AB,AD平分∠CAB交弧BC于点D,

∴OE=EF,

在Rt△EFC中,CE>EF,

∴CE>OE,

∴B错误.

C.∵在△ODE和△ADO中,只有∠ADO=∠EDO,

∵∠COD=2∠CAD=2∠OAD,

∴∠DOE≠∠DAO,

∴不能证明△ODE和△ADO相似,

∴C错误;D.∵AD平分∠CAB交于点D,∴∠CAD=∠BAD.∴CD=BD∴BC<CD+BD=2CD,∵半径OC⊥AB于O,∴AC=BC,∴AC<2CD,∴D错误.故选A.【点睛】本题主要考查相似三角形的判定与性质,圆心角、弧、弦的关系,圆周角定理,等腰三角形的性质,三角形内角和定理等知识点的灵活运用,此题步骤繁琐,但相对而言,难易程度适中,很适合学生的训练.5、A【分析】令每个小正方形的边长为1,分别求出两个三角形的边长,从而根据相似三角形的对应边成比例即可找到点F对应的位置.【详解】解:根据题意,△ABC的三边之比为要使△ABC∽△DEF,则△DEF的三边之比也应为经计算只有甲点合适,

故选:A.

【点睛】本题考查了相似三角形的判定定理:

(1)两角对应相等的两个三角形相似.

(2)两边对应成比例且夹角相等的两个三角形相似.

(3)三边对应成比例的两个三角形相似.6、D【分析】先求出的值,再进行判断即可得出答案.【详解】解:一元二次方程x2+2020=0中,

=0-4×1×2020<0,

故原方程无实数根.

故选:D.【点睛】本题考查了根的判别式,一元二次方程根的情况与判别式△的关系:(1)>0⇔方程有两个不相等的实数根;(2)=0⇔方程有两个相等的实数根;(3)<0⇔方程没有实数根.7、C【分析】根据勾股定理求出AB,并根据正弦公式:sinA=求解即可.【详解】∵∠C=90°,BC=3,AC=4∴∴故选C.【点睛】本题主要是正弦函数与勾股定理的简单应用,正确理解正弦求值公式即可.8、B【解析】根据有理数的减法、绝对值的意义、相反数的意义解答即可.【详解】A.,故不正确;B.,正确;C.,故不正确;D.,故不正确;故选B.【点睛】本题考查了有理数的运算,熟练掌握有理数的减法法则、绝对值的意义、相反数的意义是解答本题的关键.9、D【解析】如图,把△ADF绕点A顺时针旋转90°得到△ABH,由旋转的性质得,BH=DF,AH=AF,∠BAH=∠DAF,由已知条件得到∠EAH=∠EAF=45°,根据全等三角形的性质得到EH=EF,所以∠ANM=∠AEB,则可求得②正确;根据三角形的外角的性质得到①正确;根据相似三角形的判定定理得到△OAM∽△DAF,故③正确;根据相似三角形的性质得到∠AEN=∠ABD=45°,推出△AEN是等腰直角三角形,根据勾股定理得到AE=AN,再根据相似三角形的性质得到EF=MN,于是得到S△AEF=2S△AMN.故④正确.【详解】如图,把△ADF绕点A顺时针旋转90°得到△ABH由旋转的性质得,BH=DF,AH=AF,∠BAH=∠DAF∵∠EAF=45°∴∠EAH=∠BAH+∠BAE=∠DAF+∠BAE=90°﹣∠EAF=45°∴∠EAH=∠EAF=45°在△AEF和△AEH中∴△AEF≌△AEH(SAS)∴EH=EF∴∠AEB=∠AEF∴BE+BH=BE+DF=EF,故②正确∵∠ANM=∠ADB+∠DAN=45°+∠DAN,∠AEB=90°﹣∠BAE=90°﹣(∠HAE﹣∠BAH)=90°﹣(45°﹣∠BAH)=45°+∠BAH∴∠ANM=∠AEB∴∠ANM=∠AEB=∠ANM;故③正确,∵AC⊥BD∴∠AOM=∠ADF=90°∵∠MAO=45°﹣∠NAO,∠DAF=45°﹣∠NAO∴△OAM∽△DAF故①正确连接NE,∵∠MAN=∠MBE=45°,∠AMN=∠BME∴△AMN∽△BME∴∴∵∠AMB=∠EMN∴△AMB∽△NME∴∠AEN=∠ABD=45°∵∠EAN=45°∴∠NAE=NEA=45°∴△AEN是等腰直角三角形∴AE=∵△AMN∽△BME,△AFE∽△BME∴△AMN∽△AFE∴∴∴∴S△AFE=2S△AMN故④正确故选D.【点睛】此题考查相似三角形全等三角形的综合应用,熟练掌握相似三角形,全等三角形的判定定理是解决此类题的关键.10、B【分析】根据相似三角形的判定定理对各选项进行逐一判定即可.【详解】A、根据两边成比例,夹角相等,故两三角形相似,故本选项错误;B、两三角形的对应边不成比例,故两三角形不相似,故本选项正确;C、两三角形对应边成比例且夹角相等,故两三角形相似,故本选项错误.D、根据两边成比例,夹角相等,故两三角形相似,故本选项错误;故选:B.【点睛】此题主要考查相似三角形的判定,解题的关键是熟知相似三角形的判定定理.11、B【分析】根据1013年市政府共投资1亿元人民币建设了廉租房,预计1015年底三年共累计投资亿元人民币建设廉租房,由每年投资的年平均增长率为x可得出1014年、1015年的投资额,由三年共投资9.5亿元即可列出方程.【详解】解:这两年内每年投资的增长率都为,则1014年投资为1(1+x)亿元,1015年投资为1(1+x)1亿元,由题意则有,故选B.【点睛】本题考查了一元二次方程的应用——增长率问题,正确理解题意是解题的关键.若原来的数量为a,平均每次增长或降低的百分率为x,经过第一次调整,就调整到a×(1±x),再经过第二次调整就是a×(1±x)(1±x)=a(1±x)1.增长用“+”,下降用“-”.12、A【分析】根据三角形内心定义即可得到答案.【详解】∵内切圆的圆心是三角形三条角平分线的交点,叫做三角形的内心,∴A正确,B、C、D均错误,故选:A.【点睛】此题考查三角形的内心,熟记定义是解题的关键.二、填空题(每题4分,共24分)13、【分析】设抛物线T1,T2,T3…的顶点依次为B1,B2,B3…,连接A1B1,A2B1,A2B2,A3B2,A3B3,A4B3…,过抛物线各顶点作x轴的垂线,由△A1B1A2是等边三角形,结合顶点都在直线y=x上,可以求出,A2(4,0),进而得到T1的表达式:,同理,依次类推即可得到结果.【详解】解:设抛物线T1,T2,T3…的顶点依次为B1,B2,B3…,连接A1B1,A2B1,A2B2,A3B2,A3B3,A4B3…,过抛物线各顶点作x轴的垂线,如图所示:∵△A1B1A2是等边三角形,∴∠B1A1A2=60°,∵顶点都在直线y=x上,设,∴OC1=m,,∴,∴∠B1OC1=30°,∴∠OB1A1=30°,∴OA1=A1B1=2=A2B1,∴A1C1=A1B1•cos60°=1,,∴OC1=OA1+A1C1=3,∴,A2(4,0),设T1的解析式为:,则,∴,∴T1:,同理,T2的解析式为:,T3的解析式为:,…则Tn的解析式为:,故答案为:.【点睛】本题考查了等边三角形的性质,直角三角形中锐角三角函数值的应用,直线表达式的应用,图形规律中类比归纳思想的应用,顶点式设二次函数解析式并求解,掌握二次函数解析式的求解是解题的关键.14、【分析】根据位似变换的性质计算即可.【详解】∵以原点O为位似中心,相似比为,把线段AB缩短为线段CD,B(6,3),∴点D的坐标为:,即,故答案为:.【点睛】本题考查的是位似变换,在平面直角坐标系中,如果位似变换是以原点为位似中心,相似比为k,那么位似图形对应点的坐标的比等于k或-k.15、32【解析】分3为等腰三角形的腰与3为等腰三角形的底两种情况考虑.①当3为等腰三角形的腰时,将x=3代入原方程可求出k的值,再利用分解因式法解一元二次方程可求出等腰三角形的底,由三角形的三边关系可确定此情况不存在;②当3为等腰三角形的底时,由方程的系数结合根的判别式可得出△=144﹣4k=0,解之即可得出k值,进而可求出方程的解,再利用三角形的三边关系确定此种情况符合题意.此题得解.【详解】①当3为等腰三角形的腰时,将x=3代入原方程得1﹣12×3+k=0,解得:k=27,此时原方程为x2﹣12x+27=0,即(x﹣3)(x﹣1)=0,解得:x1=3,x2=1.∵3+3=2<1,∴3不能为等腰三角形的腰;②当3为等腰三角形的底时,方程x2﹣12x+k=0有两个相等的实数根,∴△=(﹣12)2﹣4k=144﹣4k=0,解得:k=32,此时x1=x22.∵3、2、2可以围成等腰三角形,∴k=32.故答案为32.【点睛】本题考查了解一元二次方程-因式分解法、根的判别式、三角形的三边关系以及等腰三角形的性质,分3为等腰三角形的腰与3为等腰三角形的底两种情况考虑是解题的关键.16、4米.【分析】首先根据斜面坡度为i=1:求出株距(相邻两树间的水平距离)为6m时的铅直高度,再利用勾股定理计算出斜坡相邻两树间的坡面距离.【详解】由题意水平距离为6米,铅垂高度2米,∴斜坡上相邻两树间的坡面距离=(m),故答案为:4米.【点睛】此题考查解直角三角形的应用,解题关键是掌握计算法则.17、【解析】由,知点A,C都在BD的垂直平分线上,因此,可连接交于点,易证是等边三角形,是等边三角形,根据等边三角形的性质对三角形中的线段进行等量转换即可求出OB,OC的长度,应用勾股定理可求解.【详解】解:如图,连接交于点∵,,,∴垂直平分,是等边三角形∴,,∵∴,∴∴∴∵∴是等边三角形∴∴,∴∴【点睛】本题主要考查了等边三角形的判定与性质、勾股定理,综合运用等边三角形的判定与性质进行线段间等量关系的转换是解题的关键.18、﹣2【解析】∵反比例函数y=-6x∴3=-6m,解得三、解答题(共78分)19、米【分析】如图(见解析),过点A作于点E,过B作于点F,设河宽为x米,则,在和中分别利用和建立x的等式,求解即可.【详解】过点A作于点E,过B作于点F设河宽为x米,则依题意得在中,,即解得:则在中,,即解得:(米)答:根据学习小组的测量数据计算出河宽为米.【点睛】本题考查了锐角三角函数中的正切的实际应用,依据题意构造出直角三角形是解题关键.20、(1)120°;(2);(3)≤OE≤【分析】(1)利用圆内接四边形对角互补构建方程解决问题即可.(2)将△ACD绕点C逆时针旋转120°得△CBE,根据旋转的性质得出∠E=∠CAD=30°,BE=AD=5,AC=CE,求出A、B、E三点共线,解直角三角形求出即可;(3)由题知AC⊥BD,过点O作OM⊥AC于M,ON⊥BD于N,连接OA,OD,判断出四边形OMEN是矩形,进而得出OE2=2﹣(AC2+BD2),设AC=m,构建二次函数,利用二次函数的性质解决问题即可.【详解】解:(1)如图1中,∵四边形ABCD是⊙O的内接四边形,∴∠A+∠C=180°,∵∠A:∠C=1:2,∴设∠A=x,∠C=2x,则x+2x=180°,解得,x=60°,∴∠C=2x=120°.(2)如图2中,∵A、B、C、D四点共圆,∠BAD=60°,∴∠BCD=180°﹣60°=120°,∵点C为弧BD的中点,∴BC=CD,∠CAD=∠CAB=∠BAD=30°,将△ACD绕点C逆时针旋转120°得△CBE,如图2所示:则∠E=∠CAD=∠CAB=30°,BE=AD=5,AC=CE,∴∠ABC+∠EBC=(180°﹣∠CAB﹣∠ACB)+(180°﹣∠E﹣∠BCE)=360°﹣(∠CAB+∠ACB+∠ABC)=360°﹣180°=180°,∴A、B、E三点共线,过C作CM⊥AE于M,∵AC=CE,∴AM=EM=AE=(AB+AD)=×(3+5)=4,在Rt△AMC中,AC=.(3)过点O作OM⊥AC于M,ON⊥BD于N,连接OA,OD,∵OA=OD=1,OM2=OA2﹣AM2,ON2=OD2﹣DN2,AM=AC,DN=BD,AC⊥BD,∴四边形OMEN是矩形,∴ON=ME,OE2=OM2+ME2,∴OE2=OM2+ON2=2﹣(AC2+BD2)设AC=m,则BD=3﹣m,∵⊙O的半径为1,AC+BD=3,∴1≤m≤2,OE2=2﹣[(AC+BD)2﹣2AC×BD]=﹣m2+m﹣=﹣(m﹣)2+,∴≤OE2≤,∴≤OE≤.【点睛】本题主要考查的是圆和四边形的综合应用,掌握圆和四边形的基本性质结合题目条件分析题目隐藏条件是解题的关键.21、18°【分析】连接,根据圆周角定理可得出的度数,再由直角三角形的性质得,根据三角形外角的性质即可得出结论.【详解】解:连接,点是斜边的中点是的外角故答案为:.【点睛】本题考查的是圆周角定理,根据题意作辅助线,构造出圆周角是解答此题的关键.22、(1)生物园的宽为米,长为米;(2)不能围成面积为平方米的生物园,见解析【分析】(1)设垂直于墙的一边长为x米,则平行于墙的一边长为(16-2x)米,根据长方形的面积公式结合生物园的面积为30平方米,即可得出关于x的一元二次方程,解之取其较大值即可得出结论;

(2)设垂直于墙的一边长为y米,则平行于墙的一边长为(16-2y)米,根据长方形的面积公式结合生物园的面积为35平方米,即可得出关于y的一元二次方程,由根的判别式△<0可得出该方程无解,进而可得出不能围成面积为35平方米的生物园.【详解】解:(1)设生物园的宽为米,那么长为米,依题意得:,解得,,当时,,不符合题意,舍去∴,答:生物园的宽为米,长为米.(2)设生物园的宽为米,那么长为米,依题意得:,∵,∴此方程无解,∴不能围成面积为平方米的生物园.【点睛】本题考查了一元二次方程的应用以及根的判别式,找准等量关系,正确列出一元二次方程是解题的关键.23、(1);(2)四边形ABCD的面积最大值是;(3)存在,其最大值为.【分析】(1)连接OA、OB,作OH⊥AB于H,利用求出∠AOH=∠AOB=,根据OA=4,利用余弦公式求出AH,即可得到AB的长;(2)连接AC,由得出AC=,再根据四边形的面积=,当DH+BM最大时,四边形ABCD的面积最大,得到BD是直径,再将AC、BD的值代入求出四边形面积的最大值即可;(3)先证明△ADM≌△BMC,得到△CDM是等边三角形,求得等边三角形的边长CD,再根据完全平方公式的关系得出PD=PC时PD+PC最大,根据CD、∠DPC求出PD,即可得到四边形周长的最大值.【详解】(1)连接OA、OB,作OH⊥AB于H,∵,∴∠AOB=120.∵OH⊥AB,∴∠AOH=∠AOB=,AH=BH=AB,∵OA=4,∴AH=,∴AB=2AH=.故答案为:.(2)∵∠ABC=120,四边形ABCD内接于,∴∠ADC=60,∵的半径为6,∴由(1)得AC=,如图,连接AC,作DH⊥AC,BM⊥AC,∴四边形的面积=,当DH+BM最大时,四边形ABCD的面积最大,连接BD,则BD是的直径,∴BD=2OA=12,BD⊥AC,∴四边形的面积=.∴四边形ABCD的面积最大值是(3)存在;∵千米,千米,,∴△ADM≌△BMC,∴DM=MC,∠AMD=∠BCM,∵∠BCM+∠BMC=180-∠B=120,∴∠AMD+∠BMC=120,∴∠DMC=60,∴△CDM是等边三角形,∴C、D、M三点共圆,∵点P在弧CD上,∴C、D、M、P四点共圆,∴∠DPC=180-∠DMC=120,∵弧的半径为1千米,∠DMC=60,∴CD=,∵,∴,∴,∴当PD=PC时,PD+PC最大,此时点P在弧CD的中点,交DC于H,在Rt△DPH中,∠DHP=90,∠DPH=60,DH=DC=,∴,∴四边形的周长最大值=DM+CM+DP+CP=.【点睛】此题是一道综合题,考查圆的性质,垂径定理,三角函数,三角形全等的判定及性质,动点最大值等知识点.(1)中问题发现的结论应用很主要,理解题意在(2)、(3)中应用解题,(3)的PD+PC最大值的确定是难点,注意与所学知识的结合才能更好的解题.24、(1)CM=;(2)r=2﹣2;(3)1.【分析】(1)如图1中,连接OM,OC,作OH⊥BC于H.首先证明CM=2OD,设AO=CO=r,在Rt△CDO中,根据OC2=CD2+OD2,构建方程求出r即可解决问题.(2)证明△OEF,△ABE都是等腰直角三角形,设OA=OF=EF=r,则OE=r,根据AE=2,构建方程即可解决问题.(3)分别求出S1、S2、S3的值即可解决问题.【详解】解:(1)如图1中,连接OM,OC,作OH⊥BC于H.∵OH⊥CM,∴MH=CH,∠OHC=90°,∵四边形ABCD是矩形,∴∠D=∠HCD=90°,∴四边形CDOH是矩形,∴CH=OD,CM=2OD,设AO=CO=r,在Rt△CDO中,∵OC2=CD2+OD2,∴r2=22+(3﹣r)2,∴r=,∴OD=3﹣r=,∴CM=2OD=.(2)如图2中,∵BE是⊙O的切线,∴OF⊥BE,∵EF=FO,∴∠FEO=45°,∵∠BAE=90°,∴∠ABE=∠AEB=45°,∴AB=BE=2,设OA=OF=EF=r,则OE=r,∴r+r=2,∴r=2﹣2.(3)如图3中,由题意:直线AB,直线BH,直线CD都是⊙O的切线,∴BA=BF=2,F

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论