2022年湖北省鄂州地区数学九上期末学业水平测试试题含解析_第1页
2022年湖北省鄂州地区数学九上期末学业水平测试试题含解析_第2页
2022年湖北省鄂州地区数学九上期末学业水平测试试题含解析_第3页
2022年湖北省鄂州地区数学九上期末学业水平测试试题含解析_第4页
2022年湖北省鄂州地区数学九上期末学业水平测试试题含解析_第5页
已阅读5页,还剩17页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年九上数学期末模拟试卷注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每题4分,共48分)1.在△ABC中,∠C=90°,sinA=,则tanB等于()A. B.C. D.2.在△ABC中,D是AB中点,E是AC中点,若△ADE的面积是3,则△ABC的面积是()A.3 B.6 C.9 D.123.某专卖店专营某品牌女鞋,店主对上一周中不同尺码的鞋子销售情况统计如表:尺码3536373839平均每天销售数量(双)281062该店主决定本周进货时,增加一些37码的女鞋,影响该店主决策的统计量是()A.平均数 B.方差 C.众数 D.中位数4.如图,在正方形中,点为边的中点,点在上,,过点作交于点.下列结论:①;②;③;④.正确的是(

).A.①② B.①③ C.①③④ D.③④5.若函数y=(a-1)x2-4x+2a的图象与x轴有且只有一个交点,则a的值为().A.-1或2 B.-1或1C.1或2 D.-1或2或16.在中,,,,则直角边的长是()A. B. C. D.7.方程的根是()A. B. C., D.,8.如图,在中,.以为直径作半圆,交于点,交于点,若,则的度数是()A. B. C. D.9.如图,在▱ABCD中,AB=12,AD=8,∠ABC的平分线交CD于点F,交AD的延长线于点E,CG⊥BE,垂足为G,若EF=2,则线段CG的长为()A. B. C. D.10.在平面直角坐标系中,对于二次函数,下列说法中错误的是()A.的最小值为1B.图象顶点坐标为(2,1),对称轴为直线C.当时,的值随值的增大而增大,当时,的值随值的增大而减小D.它的图象可以由的图象向右平移2个单位长度,再向上平移1个单位长度得到11.若反比例函数的图象过点(-2,1),则这个函数的图象一定过点()A.(2,-1) B.(2,1) C.(-2,-1) D.(1,2)12.如图,⊙是的外接圆,,则的度数为()A.60° B.65° C.70° D.75°二、填空题(每题4分,共24分)13.如图,某小区规划在一个长30m、宽20m的长方形ABCD上修建三条同样宽的通道,使其中两条与AB平行,另一条与AD平行,其余部分种花草.要使每一块花草的面积都为78m2,那么通道的宽应设计成多少m?设通道的宽为xm,由题意列得方程____________14.计算:﹣(﹣π)0+()﹣1=_____.15.如图所示,在中,,点是重心,联结,过点作,交于点,若,,则的周长等于______.16.已知是关于x的一元二次方程的一个解,则此方程的另一个解为____.17.二次函数y=x2﹣bx+c的图象上有两点A(3,﹣2),B(﹣9,﹣2),则此抛物线的对称轴是直线x=________.18.已知:如图,△ABC的面积为16,点D、E分别是边AB、AC的中点,则△ADE的面积为______.三、解答题(共78分)19.(8分)游乐园新建的一种新型水上滑道如图,其中线段表示距离水面(x轴)高度为5m的平台(点P在y轴上).滑道可以看作反比例函数图象的一部分,滑道可以看作是二次函数图象的一部分,两滑道的连接点B为二次函数的顶点,且点B到水面的距离,点B到y轴的距离是5m.当小明从上而下滑到点C时,与水面的距离,与点B的水平距离.(1)求反比例函数的关系式及其自变量的取值范围;(2)求整条滑道的水平距离;(3)若小明站在平台上相距y轴的点M处,用水枪朝正前方向下“扫射”,水枪出水口N距离平台,喷出的水流成抛物线形,设这条抛物线的二次项系数为p,若水流最终落在滑道上(包括B、D两点),直接写出p的取值范围.20.(8分)现有甲、乙、丙三人组成的篮球训练小组,他们三人之间进行互相传球练习,篮球从一个人手中随机传到另外一个人手中计作传球一次,共连续传球三次.(1)若开始时篮球在甲手中,则经过第一次传球后,篮球落在丙的手中的概率是;(2)若开始时篮球在甲手中,求经过连续三次传球后,篮球传到乙的手中的概率.(请用画树状图或列表等方法求解)21.(8分)如图,已知抛物线与x轴交于点A、B,与y轴分别交于点C,其中点,点,且.(1)求抛物线的解析式;(2)点P是线段AB上一动点,过P作交BC于D,当面积最大时,求点P的坐标;(3)点M是位于线段BC上方的抛物线上一点,当恰好等于中的某个角时,求点M的坐标.22.(10分)如图,等边三角形ABC放置在平面直角坐标系中,已知A(0,0),B(4,0),反比例函数的图象经过点C.求点C的坐标及反比例函数的解析式.23.(10分)某商店购进一种商品,每件商品进价30元.试销中发现这种商品每天的销售量y(件)与每件销售价x(元)的关系数据如下:x

30

32

34

36

y

40

36

32

28

(1)已知y与x满足一次函数关系,根据上表,求出y与x之间的关系式(不写出自变量x的取值范围);(2)如果商店销售这种商品,每天要获得150元利润,那么每件商品的销售价应定为多少元?(3)设该商店每天销售这种商品所获利润为w(元),求出w与x之间的关系式,并求出每件商品销售价定为多少元时利润最大?24.(10分)已知正比例函数y=k1x(k1≠0)与反比例函数的图象交于A、B两点,点A的坐标为(2,1).(1)求正比例函数、反比例函数的表达式;(2)求点B的坐标.25.(12分)如图,四边形ABCD中,AC平分∠DAB,∠ADC=∠ACB=90°,E为AB的中点,(1)求证:AC2=AB•AD;(2)求证:CE∥AD;(3)若AD=4,AB=6,求的值.26.如图,在平面直角坐标系中,△ABC的三个顶点的坐标分别为A(-3,1),B(-1,3),C(0,1).(1)将△ABC以点C为旋转中心旋转180°,画出旋转后的△A1B1C1,并写出A1,B1的坐标;(2)平移△ABC,若点A的对应点A2的坐标为(-5,-3),画出平移后的△A2B2C2,并写出B2,C2的坐标;(3)若△A2B2C2和△A1B1C1关于点P中心对称,请直接写出对称中心P的坐标.

参考答案一、选择题(每题4分,共48分)1、B【解析】法一,依题意△ABC为直角三角形,∴∠A+∠B=90°,∴cosB=,∵,∴sinB=,∵tanB==故选B法2,依题意可设a=4,b=3,则c=5,∵tanb=故选B2、D【分析】根据相似三角形的性质与判定即可求出答案.【详解】解:∵D是AB中点,E是AC中点,∴DE是△ABC的中位线,∴DE=BC,DE∥BC,∴△ADE∽△ABC,∴,∴S△ABC=4S△ADE=12,故选:D.【点睛】本题考查了相似三角形的面积问题,掌握相似三角形的性质与判定是解题的关键.3、C【分析】平均数、中位数、众数是描述一组数据集中程度的统计量;方差是描述一组数据离散程度的统计量.销量大的尺码就是这组数据的众数.【详解】由于众数是数据中出现次数最多的数,故影响该店主决策的统计量是众数.故选:C.【点睛】本题主要考查统计的有关知识,主要包括平均数、中位数、众数、方差的意义.4、C【分析】连接.根据“HL”可证≌,利用全等三角形的对应边相等,可得,据此判断①;根据“”可证≌,可得,从而可得,据此判断②;由(2)知,可证,据此判断③;根据两角分别相等的两个三角形相似,可证∽∽,可得,从而可得,据此判断④.【详解】解:(1)连接.如图所示:

∵四边形ABCD是正方形,

∴∠ADC=90°,

∵FG⊥FC,

∴∠GFC=90°,

在Rt△CFG与Rt△CDG中,∴≌.∴...①正确.(2)由(1),垂直平分.∴∠EDC+∠2=90°,

∵∠1+∠EDC=90°,∴.∵四边形ABCD是正方形,

∴AD=DC=AB,∠DAE=∠CDG=90°,∴≌.∴.∵为边的中点,∴为边的中点.∴.∴②错误.(3)由(2),得.∴.③正确.(4)由(3),可得∽∽.∴∴.∴④正确.故答案为:C.【点睛】本题考查正方形的性质、全等三角形的判定和性质、相似三角形的判定与性质、三角形中位线定理、线段的垂直平分线的性质等知识,解题的关键是灵活运用所学知识解决问题.5、D【解析】当该函数是一次函数时,与x轴必有一个交点,此时a-1=0,即a=1.当该函数是二次函数时,由图象与x轴只有一个交点可知Δ=(-4)2-4(a-1)×2a=0,解得a1=-1,a2=2.综上所述,a=1或-1或2.故选D.6、B【分析】根据余弦的定义求解.【详解】解:∵在Rt△ABC中,∠C=90°,cosB=,

∴BC=10cos40°.

故选:B.【点睛】本题考查解直角三角形:在直角三角形中,由已知元素求未知元素的过程就是解直角三角形.7、D【分析】先移项然后通过因式分解法解一元二次方程即可.【详解】或故选:D.【点睛】本题主要考查因式分解法解一元二次方程,掌握因式分解法是解题的关键.8、A【分析】连接BE、AD,根据直径得出∠BEA=∠ADB=90°,求出∠ABE、∠DAB、∠DAC的度数,根据圆周角定理求出即可.【详解】解:连接BE、AD,

∵AB是圆的直径,

∴∠ADB=∠AEB=90°,

∴AD⊥BC,

∵AB=AC,∠C=70°,

∴∠ABD=∠C=70°.∠BAC=2∠BAD∴.∠BAC=2∠BAD=2(90°-70°)=40°,∵∠BAC+=90°

∴=50°.故选A.【点睛】本题考查了圆周角定理,等腰三角形的性质等知识,准确作出辅助线是解题的关键.9、C【解析】∵∠ABC的平分线交CD于点F,∴∠ABE=∠CBE,∵四边形ABCD是平行四边形,∴DC∥AB,∴∠CBE=∠CFB=∠ABE=∠E,∴CF=BC=AD=8,AE=AB=12,∵AD=8,∴DE=4,∵DC∥AB,∴,∴,∴EB=6,∵CF=CB,CG⊥BF,∴BG=BF=2,在Rt△BCG中,BC=8,BG=2,根据勾股定理得,CG===,故选C.点睛:此题是平行四边形的性质,主要考查了角平分线的定义,平行线分线段成比例定理,等腰三角形的性质和判定,勾股定理,解本题的关键是求出AE,记住:题目中出现平行线和角平分线时,极易出现等腰三角形这一特点.10、C【分析】根据题目中的函数解析式,可以判断各个选项中的说法是否正确.【详解】解:二次函数,,∴该函数的图象开口向上,对称轴为直线,顶点为,当时,有最小值1,当时,的值随值的增大而增大,当时,的值随值的增大而减小;故选项A、B的说法正确,C的说法错误;根据平移的规律,的图象向右平移2个单位长度得到,再向上平移1个单位长度得到;故选项D的说法正确,故选C.【点睛】本题考查二次函数的性质、二次函数的最值,二次函数图象与几何变换,解答本题的关键是明确题意,利用二次函数的性质解答.11、A【解析】先把(-2,1)代入y=求出k得到反比例函数解析式为y=,然后根据反比例函数图象上点的坐标特征,通过计算各点的横纵坐标的积进行判断.【详解】把(-2,1)代入y=得k=-2×1=-2,

所以反比例函数解析式为y=,

因为2×(-1)=-2,2×1=2,-2×(-1)=2,1×2=2,

所以点(2,-1)在反比例函数y=的图象上.

故选A.【点睛】本题考查了反比例函数图象上点的坐标特征:反比例函数y=(k为常数,k≠0)的图象是双曲线,图象上的点(x,y)的横纵坐标的积是定值k,即xy=k.12、C【分析】连接OB,根据等腰三角形的性质和圆周角定理即可得到结论.【详解】连接OB,∵OC=OB,∠BCO=20,∴∠OBC=20,∴∠BOC=180−20−20=140,∴∠A=140×=70,故选:C.【点睛】本题考查了圆周角定理,要知道,同弧所对的圆周角等于它所对圆心角的一半.二、填空题(每题4分,共24分)13、(30-2x)(20-x)=6×1.【解析】解:设道路的宽为xm,将6块草地平移为一个长方形,长为(30-2x)m,宽为(20-x)m.可列方程(30-2x)(20-x)=6×1.14、1【分析】首先计算乘方、开方,然后从左向右依次计算,求出算式的值是多少即可.【详解】解:﹣(﹣π)0+()﹣1=2﹣1+2=1.故答案为:1.【点睛】此题考查的是实数的混合运算,掌握立方根的定义、零指数幂的性质和负指数幂的性质是解决此题的关键.15、10【分析】延长AG交BC于点H,由G是重心,推出,再由得出,从而可求AD,DG,AG的长度,进而答案可得.【详解】延长AG交BC于点H∵G是重心,∴∵∴∵,AH是斜边中线,∴∴∴∴的周长等于故答案为:10【点睛】本题主要考查三角形重心的性质及平行线分线段成比例,掌握三角形重心的性质是解题的关键.16、【分析】将x=-3代入原方程,解一元二次方程即可解题.【详解】解:将x=-3代入得,a=-1,∴原方程为,解得:x=1或-3,【点睛】本题考查了含参的一元二次方程的求解问题,属于简单题,熟悉概念是解题关键.17、-3【分析】观察A(3,﹣2),B(﹣9,﹣2)两点坐标特征,纵坐标相等,可知A,B两点关于抛物线对称轴对称,对称轴为经过线段AB中点且平行于y轴的直线.【详解】解:∵A(3,﹣2),B(﹣9,﹣2)两点纵坐标相等,∴A,B两点关于对称轴对称,根据中点坐标公式可得线段AB的中点坐标为(-3,-2),∴抛物线的对称轴是直线x=-3.【点睛】本题考查二次函数图象的对称性及对称轴的求法,常见确定对称轴的方法有,已知解析式则利用公式法确定对称轴,已知对称点利用对称性确定对称轴,根据条件确定合适的方法求对称轴是解答此题的关键.18、4【分析】根据三角形中位线的性质可得DE//BC,,即可证明△ADE∽△ABC,根据相似三角形的面积比等于相似比的平方即可得答案.【详解】∵点D、E分别是边AB、AC的中点,∴DE为△ABC的中位线,∴DE//BC,,∴△ADE∽△ABC,∴=,∵△ABC的面积为16,∴S△ADE=×16=4.故答案为:4【点睛】本题考查三角形中位线的性质及相似三角形的判定与性质,三角形的中位线平行于第三边,且等于第三边的一半;熟练掌握相似三角形的面积比等于相似比的平方是解题关键.三、解答题(共78分)19、(1),;(2)7m;(3).【分析】(1)在题中,BE=2,B到y轴的距离是5,即反比例函数图象上一点的横坐标和纵坐标都已告知,则可求出比例系数k;(2)根据B,C的坐标求出二次函数解析式,得到点D坐标,即OD长度再减去AP长度,可得滑道ABCD的水平距离;(3)由题意可知点N为抛物线的顶点,设水流所成抛物线的表达式为,通过计算水流分别落到点B和点D可以得出p的取值范围.【详解】解:(1)∵,点B到y轴的距离是5,∴点B的坐标为.设反比例函数的关系式为,则,解得.∴反比例函数的关系式为.∵当时,,即点A的坐标为,∴自变量x的取值范围为;(2)由题意可知,二次函数图象的顶点为,点C坐标为.设二次函数的关系式为,则,解得.∴二次函数的关系式为.当时,解得(舍去),∴点D的坐标为,则.∴整条滑道的水平距离为:;(3)p的取值范围为.由题意可知,点N坐标为(,即,为抛物线的顶点.设水流所成抛物线的表达式为.当水流落在点时,由,解得;当水流落在点时,由,解得.∴p的取值范围为.【点睛】此题主要考查了反比例函数和二次函数的基本性质和概念,以及用待定系数法求函数的解析式,难度较大.错因分析较难题.失分原因是(1)没有掌握利用待定系数法求反比例函数解析式;(2)没有掌握二次函数的基本性质,利用二次函数的性质求得点D的坐标;(3)没有掌握利用顶点式求二次函数的解析式,根据B,D两点的坐标进而求得p的取值范围.20、(1)经过第一次传球后,篮球落在丙的手中的概率为;(2)篮球传到乙的手中的概率为.【分析】(1)根据概率公式即可得出答案;

(2)根据题意先画出树状图得出所有等情况数,由树形图可知三次传球有8种等可能结果,三次传球后,篮球传到乙的手中的结果有3种,由概率公式即可得出答案.【详解】(1)经过第一次传球后,篮球落在丙的手中的概率为;故答案为;(2)画树状图如图所示:由树形图可知三次传球有8种等可能结果,三次传球后,篮球传到乙的手中的结果有3种,∴篮球传到乙的手中的概率为.【点睛】本题考查用列表法或树状图法求概率以及概率公式.列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件.21、(1);(2)当时,S最大,此时;(3)或【分析】(1)先根据射影定理求出点,设抛物线的解析式为:,将点代入求出,然后化为一般式即可;(2)过点P作y轴的平行线交BC于点E,设,用待定系数法分别求出直线BC,直线AC,直线PD的解析式,表示出点E,点D的坐标,然后根据三角形面积公式列出二次函数解析式,利用二次函数的性质求解即可;(3)分两种情况求解:当时和当时.【详解】(1)∵,,∴,.∵,∴由射影定理可得:,∴,∴点,设抛物线的解析式为:,将点代入上式得:,∴抛物线的解析式为:;(2)过点P作y轴的平行线交BC于点E,设,设,把,代入得,∴,∴,∴,同样的方法可求,故可设,把代入得,联立解得:,∴,,故当时,S最大,此时;(3)由题知,,当时,,∴点C与点M关于对称轴对称,∴;当时,过M作于F,过F作y轴的平行线,交x轴于G,交过M平行于x轴的直线于K,∵∠,BFM=∠BGF,∴△MFK∽△FGB,同理可证:,∴,,设,则,∴,∴,代入,解得,或(舍去),∴,故或.【点睛】本题考查了待定系数法求二次函数、一次函数解析式,二次函数的图像与性质,一次函数图像交点坐标与二元一次方程组解的关系,相似三角形的判定与性质,以及分类讨论的数学思想,难度较大,属中考压轴题.22、点C坐标为(2,2),y=【分析】过C点作CD⊥x轴,垂足为D,设反比例函数的解析式为y=,根据等边三角形的知识求出AC和CD的长度,即可求出C点的坐标,把C点坐标代入反比例函数解析式求出k的值.【详解】解:过C点作CD⊥x轴,垂足为D,设反比例函数的解析式为y=,∵△ABC是等边三角形,∴AC=AB=4,∠CAB=60°,∴AD=3,CD=sin60°×4=×4=2,∴点C坐标为(2,2),∵反比例函数的图象经过点C,∴k=4,∴反比例函数的解析式:y=;【点睛】考查了待定系数法确定反比例函数的解析式的知识,解题的关键是根据题意求得点C的坐标,难度不大.23、(1)y=-2x+100;(2)35元或45元;(3)W=-2x2+160x-3000,40元时利润最大.【解析】试题分析:(1)设一次函数解析式,将表格中任意两组x,y值代入解出k,b,即可求出该解析式;(2)利润等于单件利润乘以销售量,而单件利润又等于每件商品的销售价减去进价,从而建立每件商品的销售价与利润的一元二次方程求解;(3)将w替换上题中的150元,建立w与x的二次函数,化成一般式,看二次项系数,讨论x取值,从而确定每件商品销售价定为多少元时利润最大.试题解析:(1)设该函数的表达式为y=kx+b(k≠0),根据题意,得,解得,∴该函数的表达式为y=-2x+100;(2)根据题意得:(-2x+100)(x-30)="150",解这个方程得,x1=35,x2=45∴每件商品的销售价定为35元或45元时日利润为150元.(3)根据题意得:w=(-2x+100)(x-30)=-2x2+160x-3000=-2(x-40)2+200,∵a=-2<0,则抛物线开口向下,函数有最大值,即当x=40时,w的值最大,∴当销售单价为40元时获得利润最大.考点:一次函数与二次函数的实际应用.24、(1)正比例函数、反比例函数的表达式为:,;(2)B点坐标是(-2,-1)【解析】试题分析:(1)把点A、B的坐标分别代入函数y=

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论