2022年贵州省铜仁松桃县联考数学九上期末调研模拟试题含解析_第1页
2022年贵州省铜仁松桃县联考数学九上期末调研模拟试题含解析_第2页
2022年贵州省铜仁松桃县联考数学九上期末调研模拟试题含解析_第3页
2022年贵州省铜仁松桃县联考数学九上期末调研模拟试题含解析_第4页
2022年贵州省铜仁松桃县联考数学九上期末调研模拟试题含解析_第5页
已阅读5页,还剩18页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年九上数学期末模拟试卷注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(每小题3分,共30分)1.如图,AB是⊙O的直径,CD是⊙O的弦,若∠BAD=48°,则∠DCA的大小为()A. B. C. D.2.已知xy=1A.32 B.13 C.23.如图,保持△ABC的三个顶点的横坐标不变,纵坐标都乘﹣1,画出坐标变化后的三角形,则所得三角形与原三角形的关系是()A.关于x轴对称B.关于y轴对称C.将原图形沿x轴的负方向平移了1个单位D.将原图形沿y轴的负方向平移了1个单位4.如图,点A,B,C,D都在上,OA⊥BC,∠AOB=40°,则∠CDA的度数为()A.40° B.30° C.20° D.15°5.下列判断正确的是()A.对角线互相垂直的平行四边形是菱形 B.两组邻边相等的四边形是平行四边形C.对角线相等的四边形是矩形 D.有一个角是直角的平行四边形是正方形6.如图,在中,,则的长度为A.1 B. C. D.7.如图,AB是半圆O的直径,且AB=4cm,动点P从点O出发,沿OA→→BO的路径以每秒1cm的速度运动一周.设运动时间为t,s=OP2,则下列图象能大致刻画s与t的关系的是()A. B.C. D.8.如图,四边形内接于圆,过点作于点,若,,则的长度为()A. B.6 C. D.不能确定9.下列一元二次方程中,没有实数根的是().A. B.C. D.10.如图,AB为圆O直径,C、D是圆上两点,ADC=110°,则OCB度()A.40 B.50 C.60 D.70二、填空题(每小题3分,共24分)11.如果抛物线y=(k﹣2)x2+k的开口向上,那么k的取值范围是_____.12.在一只不透明的口袋中放入只有颜色不同的白色球3个,黑色球5个,黄色球n个,搅匀后随机从中摸取一个恰好是白色球的概率为,则放入的黄色球数n=_________.13.已知=,则的值是_______.14.计算:2sin30°+tan45°=_____.15.如图,O为Rt△ABC斜边中点,AB=10,BC=6,M、N在AC边上,若△OMN∽△BOC,点M的对应点是O,则CM=______.16.如图,在中,,对角线,点E是线段BC上的动点,连接DE,过点D作DP⊥DE,在射线DP上取点F,使得,连接CF,则周长的最小值为___________.17.二次函数的图象如图所示,若,.则、的大小关系为_____.(填“”、“”或“”)18.在平面直角坐标系中,抛物线的图象如图所示.已知点坐标为,过点作轴交抛物线于点,过点作交抛物线于点,过点作轴交抛物线于点,过点作交抛物线于点……,依次进行下去,则点的坐标为_____.三、解答题(共66分)19.(10分)已知关于的一元二次方程的两实数根分别为.(1)求的取值范围;(2)若,求方程的两个根.20.(6分)已知二次函数的图象经过点.(1)当时,若点在该二次函数的图象上,求该二次函数的表达式;(2)已知点,在该二次函数的图象上,求的取值范围;(3)当时,若该二次函数的图象与直线交于点,,且,求的值.21.(6分)如图,将矩形ABCD绕点C旋转得到矩形EFGC,点E在AD上.延长AD交FG于点H(1)求证:△EDC≌△HFE;(2)若∠BCE=60°,连接BE、CH.证明:四边形BEHC是菱形.22.(8分)已知关于x的方程x2-6x+k=0的两根分别是x1、x2.(1)求k的取值范围;(2)当+=3时,求k的值.23.(8分)如图,直线和反比例函数的图象都经过点,点在反比例函数的图象上,连接.(1)求直线和反比例函数的解析式;(2)直线经过点吗?请说明理由;(3)当直线与反比例数图象的交点在两点之间.且将分成的两个三角形面积之比为时,请直接写出的值.24.(8分)在平面直角坐标系中,直线与反比例函数的图象的两个交点分别为点(,)和点.(1)求的值和点的坐标;(2)如果点为轴上的一点,且∠直接写出点A的坐标.25.(10分)(1)计算:4sin260°+tan45°-8cos230°(2)在Rt△ABC中,∠C=90°.若∠A=30°,b=5,求a、c.26.(10分)从三角形(不是等腰三角形)一个顶点引出一条射线与对边相交,顶点与交点之间的线段把这个三角形分割成两个小三角形,如果分得的两个小三角形中一个为等腰三角形,另一个与原三角形相似,我们把这条线段叫做这个三角形的完美分割线.如图1,在中,是的完美分割线,且,则的度数是如图2,在中,为角平分线,,求证:为的完美分割线.如图2,中,是的完美分割线,且是以为底边的等腰三角形,求完美分割线的长.

参考答案一、选择题(每小题3分,共30分)1、B【详解】解:连接BD,∵AB是⊙O的直径,∴∠ADB=90°,∴∠ABD=90°−∠BAD=42°,∴∠DCA=∠ABD=42°故选B2、A【解析】由题干可得y=2x,代入x+yy【详解】∵xy∴y=2x,∴x+yy故选A.【点睛】本题考查了比例的基本性质:两内项之积等于两外项之积.即若ab=cd,则3、A【分析】根据“关于x轴对称的点,横坐标相同,纵坐标互为相反数”,可知所得的三角形与原三角形关于x轴对称.【详解】解:∵纵坐标乘以﹣1,∴变化前后纵坐标互为相反数,又∵横坐标不变,∴所得三角形与原三角形关于x轴对称.故选:A.【点睛】本题考查平面直角坐标系中对称点的规律.解题关键是掌握好对称点的坐标规律:(1)关于x轴对称的点,横坐标相同,纵坐标互为相反数;(2)关于y轴对称的点,纵坐标相同,横坐标互为相反数;(3)关于原点对称的点,横坐标与纵坐标都互为相反数.4、C【分析】先根据垂径定理由OA⊥BC得到,然后根据圆周角定理计算即可.【详解】解:∵OA⊥BC,∴,∴∠ADC=∠AOB=×40°=20°.故选:C.【点睛】本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.也考查了垂径定理.5、A【分析】利用特殊四边形的判定定理逐项判断即可.【详解】A、对角线互相垂直的平行四边形是菱形,此项正确B、两组对边分别相等的四边形是平行四边形,此项错误C、对角线相等的平行四边形是矩形,此项错误D、有一个角是直角的平行四边形是矩形,此项错误故选:A.【点睛】本题考查了特殊四边形(平行四边形、菱形、矩形、正方形)的判定定理,掌握理解各判定定理是解题关键.6、C【分析】根据已知条件得到,根据相似三角形的判定和性质可得,即可得到结论.【详解】解:∵,

∴,

∵DE∥BC,

∴△ADE∽△ABC,,∴,∴BC=4.故选:C.【点睛】本题考查了相似三角形的判定与性质,熟悉相似基本图形掌握相似三角形的判定与性质是解题关键.7、C【解析】在半径AO上运动时,s=OP1=t1;在弧BA上运动时,s=OP1=4;在BO上运动时,s=OP1=(4π+4-t)1,s也是t是二次函数;即可得出答案.【详解】解:利用图象可得出:当点P在半径AO上运动时,s=OP1=t1;在弧AB上运动时,s=OP1=4;在OB上运动时,s=OP1=(1π+4-t)1.结合图像可知C选项正确故选:C.【点睛】此题考查了动点问题的函数图象,能够结合图形正确得出s与时间t之间的函数关系是解决问题的关键.8、B【分析】首先根据圆内接四边形的性质求得∠A的度数,然后根据解直角三角形的方法即可求解.【详解】∵四边形ABCD内接于⊙O,,∴∠A=180−120=60,∵BH⊥AD,,∴BH=AHtan60°=,故选:B.【点睛】本题考查了圆内接四边形及勾股定理的知识,解题的关键是熟知解直角三角形的方法.9、D【分析】分别计算出每个方程的判别式即可判断.【详解】A、∵△=4-4×1×0=4>0,∴方程有两个不相等的实数根,故本选项不符合题意;B、∵△=16-4×1×(-1)=20>0,∴方程有两个不相等的实数根,故本选项不符合题意;C、∵△=25-4×3×2=1>0,∴方程有两个不相等的实数根,故本选项不符合题意;D、∵△=16-4×2×3=-8<0,∴方程没有实数根,故本选项正确;故选:D.【点睛】本题考查了根的判别式,一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.10、D【分析】根据角的度数推出弧的度数,再利用外角∠AOC的性质即可解题.【详解】解:∵ADC=110°,即优弧的度数是220°,∴劣弧的度数是140°,∴∠AOC=140°,∵OC=OB,∴∠OCB=∠AOC=70°,故选D.【点睛】本题考查圆周角定理、外角的性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.二、填空题(每小题3分,共24分)11、k>2【解析】根据二次函数的性质可知,当抛物线开口向上时,二次项系数k﹣2>1.【详解】因为抛物线y=(k﹣2)x2+k的开口向上,所以k﹣2>1,即k>2,故答案为k>2.【点睛】本题考查二次函数,解题的关键是熟练运用二次函数的图象与性质,本题属于中等题型.12、1

【分析】根据口袋中装有白球3个,黑球5个,黄球n个,故球的总个数为3+5+n,再根据黄球的概率公式列式解答即可.【详解】∵口袋中装有白球3个,黑球5个,黄球n个,∴球的总个数为3+5+n,∵从中随机摸出一个球,摸到白色球的概率为,即,解得:n=1,故答案为:1.【点睛】本题主要考查概率公式,如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.13、【分析】根据合比性质:,可得答案.【详解】由合比性质,得,

故答案为:.【点睛】此题考查比例的性质,利用合比性质是解题关键.14、1.【分析】根据解特殊角的三角函数值即可解答.【详解】原式=1×+1=1.【点睛】本题考查特殊角的三角函数值,解题的关键是牢记这些特殊三角函数值.15、【分析】根据直角三角形斜边中线的性质可得OC=OA=OB=AB,根据等腰三角形的性质可得∠A=∠OCA,∠OCB=∠B,由相似三角形的性质可得∠ONC=∠OCB,,可得OM=MN,利用等量代换可得∠ONC=∠B,即可证明△CNO∽△ABC,利用外角性质可得∠ACO=∠MOC,可得OM=CM,即可证明CM=CN,利用勾股定理可求出AC的长,根据相似三角形的性质即可求出CN的长,即可求出CM的长.【详解】∵O为Rt△ABC斜边中点,AB=10,BC=6,∴OC=OA=OB=AB=5,AC==8,∴∠A=∠OCA,∠OCB=∠B,∵△OMN∽△BOC,∴∠ONC=∠OCB,,∠COB=∠OMN,∴MN=OM,∠ONC=∠B,∴△CNO∽△ABC,∴,即,解得:CN=,∵∠OMN=∠OCM+∠MOC,∠COB=∠A+∠OCA,∴∠OCM=∠MOC,∴OM=CM,∴CM=MN=CN=.故答案为:【点睛】本题考查直角三角形斜边中线的性质、等腰三角形的性质及相似三角形的判定与性质,直角三角形斜边中线等于斜边的一半;熟练掌握相似三角形的判定定理是解题关键.16、【分析】过D作DG⊥BC于点G,过F作FH⊥DG于点H,利用tan∠DBC=和BD=10可求出DG和BG的长,然后求出CD的长,可知△DCF周长最小,即CF+DF最小,利用“一线三垂直”得到△HDF∽△GED,然后根据对应边成比例推出FH=2GD,可知F在DG右侧距离2DG的直线上,作C点关于直线的对称点C',连接DC',DC'的长即为CF+DF的最小值,利用勾股定理求出DC',则CD+DC'的长即为周长最小值.【详解】如图,过D作DG⊥BC于点G,过F作FH⊥DG于点H,∵tan∠DBC=,BD=10,设DG=x,BG=2x∴,解得∴DG=,BG=∴GC=BC-BG=∴CD=△DCF周长最小,即CF+DF最小∵∠FDE=90°∴∠HDF+∠GDE=90°∵∠GED+∠GDE=90°∴∠HDF=∠GED又∵∠DHF=∠EGD=90°∴△HDF∽△GED∴∴FH=2GD=即F在DG右侧距离的直线上运动,如图所示,作C点关于直线的对称点C',连接DC',DC'的长即为CF+DF的最小值∵DG⊥BC,FH⊥DG,FO⊥CC'∴四边形HFOG为矩形,∴OG=HF=又∵GC=∴OC=OC'=∴GC'=在Rt△DGC'中,DC'=∴△DCF周长的最小值=CD+DC'=故答案为:.【点睛】本题考查了利用正切值求边长,相似三角形的判定以及最短路径问题,解题的关键是作辅助线将三角形周长最小值转化为“将军饮马”模型.17、<【解析】由图像可知,当时,,当时,,然后用作差法比较即可.【详解】当时,,当时,,,即,故答案为:【点睛】本题考查了二次函数图像上点的坐标特征,作差法比较代数式的大小,熟练掌握二次函数图像上点的坐标满足二次函数解析式是解答本题的关键.18、【解析】根据二次函数性质可得出点的坐标,求得直线为,联立方程求得的坐标,即可求得的坐标,同理求得的坐标,即可求得的坐标,根据坐标的变化找出变化规律,即可找出点的坐标.【详解】解:∵点坐标为,∴直线为,,∵,∴直线为,解得或,∴,∴,∵,∴直线为,解得或,∴,∴…,∴,故答案为.【点睛】本题考查了二次函数图象上点的坐标特征、一次函数的图象以及交点的坐标,根据坐标的变化找出变化规律是解题的关键.三、解答题(共66分)19、(1);(2)原方程的两根是﹣3和1.【分析】(1)根据根的判别式求出的取值范围;(2)将,代入方程,求得,再根据,求解方程的两个根.【详解】(1)∵一元二次方程有两实数根,,∴∴(2)∵的两实数根分别为∴∴∴∵∴∵∴∴,∴原方程的两根是﹣3和1.【点睛】本题考查了一元二次方程根的判别式以及解一元二次方程,掌握一元二次方程根的判别式以及解法是解题的关键.20、(1);(2);(3)或2.【分析】(1)将和点,代入解析式中,即可求出该二次函数的表达式;(2)根据点M和点N的坐标即可求出该抛物线的对称轴,再根据二次函数的开口方向和二次函数的增加性,即可列出关于t的不等式,从而求出的取值范围;(3)将和点代入解析式中,可得,然后将二次函数的解析式和一次函数的解析式联立,即可求出点P、Q的坐标,最后利用平面直角坐标系中任意两点之间的距离公式即可求出的值.【详解】解:(1)∵,∴二次函数的表达式为.∵点,在二次函数的图象上,∴.解得.∴该抛物线的函数表达式为.(2)∵点,在该二次函数的图象上,∴该二次函数的对称轴是直线.∵抛物线开口向上,,,在该二次函数图象上,且,∴点,分别落在点的左侧和右侧,∴.解得的取值范围是.(3)当时,的图象经过点,∴,即.∴二次函数表达式为.根据二次函数的图象与直线交于点,由,解得,.∴点的横坐标分别是1,.不妨设点的横坐标是1,则点与点重合,即的坐标是,如下图所示∴点的坐标是,即的坐标是.∵,∴根据平面直角坐标系中任意两点之间的距离公式,可得.解得或2.【点睛】此题考查的是二次函数与一次函数的综合大题,掌握用待定系数法求二次函数的解析式、二次函数的增减性、求二次函数与一次函数的交点坐标和平面直角坐标系中任意两点之间的距离公式是解决此题的关键.21、(1)见解析;(2)见解析.【解析】(1)依据题意可得到FE=AB=DC,∠F=∠EDC=90°,FH∥EC,利用平行线的性质可证明∠FHE=∠CED,然后依据AAS证明△EDC≌△HFE即可;

(2)首先证明四边形BEHC为平行四边形,再证明邻边BE=BC即可证明四边形BEHC是菱形.【详解】(1)证明:∵矩形FECG由矩形ABCD旋转得到,∴FE=AB=DC,∠F=∠EDC=90°,FH∥EC,∴∠FHE=∠CED.在△EDC和△HFE中,,∴△EDC≌△HFE(AAS);(2)∵△EDC≌△HFE,∴EH=EC.∵矩形FECG由矩形ABCD旋转得到,∴EH=EC=BC,EH∥BC,∴四边形BEHC为平行四边形.∵∠BCE=60°,EC=BC,∴△BCE是等边三角形,∴BE=BC,∴四边形BEHC是菱形.【点睛】本题主要考查的是旋转的性质、菱形的判定,熟练掌握相关图形的性质和判定定理是解题的关键.22、(1)k≤9;(2)2【分析】(1)根据判别式的意义得到Δ=(-6)2-4k=36-4k≥0,然后解不等式即可;(2)根据根与系数的关系得到x1+x2=6,x1x2=k,再利用=3得到=3,得到满足条件的k的值.【详解】(1)∵方程有两根∴Δ=(-6)2-4k=36-4k≥0∴k≤9;(2)由已知可得,x1+x2=6,x1x2=k∴+==3∴=3∴k=2<9∴当+=3时,k的值为2.【点睛】本题考查了根与系数的关系:若x1,x2是一元二次方程ax2+bx+c=0(a≠0)的两根时,.也考查了根的判别式.23、(1);(2)直线经过点,理由见解析;(1)的值为或.【分析】(1)依据直线l1:y=-2x+b和反比例数的图象都经过点P(2,1),可得b=5,m=2,进而得出直线l1和反比例函数的表达式;

(2)先根据反比例函数解析式求得点Q的坐标为,依据当时,y=-2×+5=4,可得直线l1经过点Q;

(1)根据OM将分成的两个三角形面积之比为,分以下两种情况:①△OMQ的面积:△OMP的面积=1:2,此时有QM:PM=1:2;②OMQ的面积:△OMP的面积=2:1,此时有QM:PM=2:1,再过M,Q分别作x轴,y轴的垂线,设点M的坐标为(a,b),根据平行线分线段成比例列方程求解得出点M的坐标,从而求出k的值.【详解】解:(1)∵直线和反比例函数的图象都经过点,.∴直线l1的解析式为y=-2x+5,反比例函数大家解析式为;(2)直线经过点,理由如下.点在反比例函数的图象上,.点的坐标为.当时,.直线经过点;(1)的值为或.理由如下:OM将分成的两个三角形面积之比为,分以下两种情况:①△OMQ的面积:△OMP的面积=1:2,此时有QM:PM=1:2,如图,过点M作ME⊥x轴交PC于点E,MF⊥y轴于点F;过点Q作QA⊥x轴交PC于点A,作QB⊥y轴于点B,交FM于点G,设点M的坐标为(a,b),图①∵点P的坐标为(2,1),点Q的坐标为(,4),∴AE=a-,PE=2-a,∵ME∥BC,QM:PM=1:2,∴AE:PE=1:2,∴2-a=2(a-),解得a=1,同理根据FM∥AP,根据QG:AG=QM:PM=1:2,可得(4-b):(b-1)=1:2,解得b=1.所以点M的坐标为(1,1),代入y=kx可得k=1;②OMQ的面积:△OMP的面积=2:1,此时有QM:PM=2:1,如图②,图②同理可得点M的坐标为(,2),代入y=kx可得k=.故k的值为1或.【点睛】本题考查了反比例函数与一次函数的交点问题:反比例函数与一次函数图象的交点坐标同时满足两函数解析式.解决问题的关键是掌握

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论