2022-2023学年陕西省西安市长安中学九年级数学第一学期期末综合测试模拟试题含解析_第1页
2022-2023学年陕西省西安市长安中学九年级数学第一学期期末综合测试模拟试题含解析_第2页
2022-2023学年陕西省西安市长安中学九年级数学第一学期期末综合测试模拟试题含解析_第3页
2022-2023学年陕西省西安市长安中学九年级数学第一学期期末综合测试模拟试题含解析_第4页
2022-2023学年陕西省西安市长安中学九年级数学第一学期期末综合测试模拟试题含解析_第5页
已阅读5页,还剩17页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年九上数学期末模拟试卷注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每小题3分,共30分)1.如图,中,,,.将沿图示中的虚线剪开,按下面四种方式剪下的阴影三角形与原三角形相似的是()A.①②③ B.②③④ C.①② D.④2.现实世界中对称现象无处不在,汉字中也有些具有对称性,下列美术字是轴对称图形的是()A.处 B.国 C.敬 D.王3.如图,CD是⊙O的直径,已知∠1=30°,则∠2等于()A.30° B.45° C.60° D.70°4.下列事件是必然事件的是()A.打开电视机,正在播放动画片 B.经过有交通信号灯的路口,遇到红灯C.过三点画一个圆 D.任意画一个三角形,其内角和是5.方程是关于的一元二次方程,则的值不能是()A.0 B. C. D.6.如图,在⊙O,点A、B、C在⊙O上,若∠OAB=54°,则∠C()A.54° B.27° C.36° D.46°7.若二次函数的图象经过点P

(-1,2),则该图象必经过点()A.(1,2) B.(-1,-2) C.(-2,1) D.(2,-1)8.-5的倒数是A. B.5 C.- D.-59.如图,已知若的面积为,则的面积为()A. B. C. D.10.“线段,等边三角形,圆,矩形,正六边形”这五个图形中,既是轴对称图形又是中心对称图形的个数有()A.5个B.4个C.3个D.2个二、填空题(每小题3分,共24分)11.如图,在中,,是三角形的角平分线,如果,,那么点到直线的距离等于___________.12.同一个圆中内接正三角形、内接正四边形、内接正六边形的边长之比为___________.13.已知二次函数y=ax1+bx+c(a>0)图象的对称轴为直线x=1,且经过点(﹣1,y1),(1,y1),则y1_____y1.(填“>”“<”或“=”)14.若关于x的一元二次方程x2+mx+m2﹣19=0的一个根是﹣3,则m的值是_____.15.一张直角三角形纸片,,,,点为边上的任一点,沿过点的直线折叠,使直角顶点落在斜边上的点处,当是直角三角形时,则的长为_____.16.如图,,直线a、b与、、分别相交于点A、B、C和点D、E、F.若AB=3,BC=5,DE=4,则EF的长为______.17.已知反比例函数的图象经过点,则这个反比例函数的解析式是__________.18.已知函数,如果,那么___________.三、解答题(共66分)19.(10分)已知,如图,直线MN交⊙O于A,B两点,AC是直径,AD平分∠CAM交⊙O于D,过D作DE⊥MN于E(1)求证:DE是⊙O的切线;(2)若DE=6cm,AE=3cm,求⊙O的半径.20.(6分)求证:对角线相等的平行四边形是矩形.(要求:画出图形,写出已知和求证,并给予证明)21.(6分)在美化校园的活动中,某兴趣小组想借助如图所示的直角墙角(两边足够长),用26m长的篱笆围成一个矩形花园ABCD(篱笆只围AB,BC两边),设BC=xm.(1)若矩形花园ABCD的面积为165m2,求x的值;(2)若在P处有一棵树,树中心P与墙CD,AD的距离分别是13m和6m,要将这棵树围在花园内(考虑到树以后的生长,篱笆围矩形ABCD时,需将以P为圆心,1为半径的圆形区域围在内),求矩形花园ABCD面积S的最大值.22.(8分)如图,在矩形ABCD中,E是边CD的中点,点M是边AD上一点(与点A,D不重合),射线ME与BC的延长线交于点N.(1)求证:△MDE≌△NCE;(2)过点E作EF//CB交BM于点F,当MB=MN时,求证:AM=EF.23.(8分)如图,己知是的直径,切于点,过点作于点,交于点,连接、.(1)求证:是的切线:(2)若,,求阴影部分面积.24.(8分)如图,在平面直角坐标系中,已知矩形的三个顶点、、.抛物线的解析式为.(1)如图一,若抛物线经过,两点,直接写出点的坐标;抛物线的对称轴为直线;(2)如图二:若抛物线经过、两点,①求抛物线的表达式.②若点为线段上一动点,过点作交于点,过点作于点交抛物线于点.当线段最长时,求点的坐标;(3)若,且抛物线与矩形没有公共点,直接写出的取值范围.25.(10分)已知二次函数y=ax2+bx+c(a≠0)中,函数y与自变量x的部分对应值如下表:(1)求该二次函数的表达式;(2)该二次函数图像关于x轴对称的图像所对应的函数表达式;26.(10分)解方程:x2-5=4x.

参考答案一、选择题(每小题3分,共30分)1、A【分析】根据相似三角形的判定定理对各项进行逐项判断即可.【详解】解:①剪下的三角形与原三角形有两个角相等,故两三角形相似;②剪下的三角形与原三角形有两个角相等,故两三角形相似;③剪下的三角形与原三角形对应边成比例,故两三角形相似;④剪下的三角形与原三角形对应边不成比例,故两三角形不相似;综上所述,①②③剪下的三角形与原三角形相似.故选:A.【点睛】本题考查的知识点是相似三角形的判定定理,熟记定理内容是解此题的关键.2、D【分析】利用轴对称图形定义判断即可.【详解】解:四个汉字中,可以看作轴对称图形的是:王,故选:D.【点睛】本题考查轴对称图形的定义,轴对称图形是指沿着某条直线对称后能完全重合的图形,熟练掌握轴对称图形的概念是解决本题的关键.3、C【解析】试题分析:如图,连接AD.∵CD是⊙O的直径,∴∠CAD=90°(直径所对的圆周角是90°);在Rt△ABC中,∠CAD=90°,∠1=30°,∴∠DAB=60°;又∵∠DAB=∠2(同弧所对的圆周角相等),∴∠2=60°考点:圆周角定理4、D【分析】必然事件是在一定条件下,必然会发生的事件.依据定义判断即可.【详解】A.打开电视机,可能正在播放新闻或其他节目,所以不是必然事件;B.经过有交通信号灯的路口,遇到红灯,也可能遇到绿灯,所以不是必然事件;C.过三点画一个圆,如果这三点在一条直线上,就不能画圆,所以不是必然事件;D.任意画一个三角形,其内角和是,是必然事件.故选:D【点睛】本题考查的是必然事件,必然事件是一定发生的事件.5、C【详解】解:是关于的一元二次方程,则解得m≠故选C.【点睛】本题考查一元二次方程的概念,注意二次项系数不能为零.6、C【分析】先利用等腰三角形的性质和三角形内角和计算出∠AOB的度数,然后利用圆周角解答即可.【详解】解:∵OA=OB,∴∠OBA=∠OAB=54°,∴∠AOB=180°﹣54°﹣54°=72°,∴∠ACB=∠AOB=36°.故答案为C.【点睛】本题考查了三角形内角和和圆周角定理,其中发现并正确利用圆周角定理是解题的关键.7、A【分析】先确定出二次函数图象的对称轴为y轴,再根据二次函数的对称性解答.【详解】解:∵二次函数y=ax2的对称轴为y轴,

∴若图象经过点P(-1,2),

则该图象必经过点(1,2).

故选:A.【点睛】本题考查了二次函数图象上点的坐标特征,主要利用了二次函数图象的对称性,确定出函数图象的对称轴为y轴是解题的关键.8、C【分析】若两个数的乘积是1,我们就称这两个数互为倒数.【详解】解:5的倒数是.故选C.9、A【分析】根据相似三角形的性质得出,代入求出即可.【详解】解:∵△ADE∽△ABC,AD:AB=1:3,∴,∵△ABC的面积为9,∴,∴S△ADE=1,故选:A.【点睛】本题考查了相似三角形的性质定理,能熟记相似三角形的面积比等于相似比的平方是解此题的关键.10、B【解析】根据轴对称图形与中心对称图形的概念结合线段、等边三角形、圆、矩形、正六边形的性质求解.【详解】∵在线段、等边三角形、圆、矩形、正六边形这五个图形中,既是中心对称图形又是轴对称图形的有线段、圆、矩形、正六边形,共4个.故答案为:B.【点睛】本题考查的知识点是中心对称图形与轴对称图形的概念,解题关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,图形旋转180°后原图形重合.二、填空题(每小题3分,共24分)11、1【分析】作DE⊥AB于E,如图,利用勾股定理计算出BC=5,再根据角平分线的性质得DC=DE,然后利用面积法得到×5,从而可求出DE.【详解】作DE⊥AB于E,如图,

在Rt△ABC中,BC==5,

∵AD是三角形的角平分线,

∴DC=DE,

∵S△ACD+S△ABD=S△ABC,

∴×5,

∴DE=1,

即点D到直线AB的距离等于1.

故答案为1.【点睛】此题考查角平分线的性质,解题关键在于掌握角的平分线上的点到角的两边的距离相等.12、【分析】首先根据题意画出图形,设出圆的半径,分别求出圆中内接正三角形、内接正四边形、内接正六边形的边长,即可得出答案.【详解】设圆的半径为r,如图①,过点O作于点C则如图②,如图③,为等边三角形∴同一个圆中内接正三角形、内接正四边形、内接正六边形的边长之比为故答案为【点睛】本题主要考查圆的半径与内接正三角形,正方形和正六边形的边长之间的关系,能够画出图形是解题的关键.13、>【分析】根据二次函数y=ax1+bx+c(a>0)图象的对称轴为直线x=1,且经过点(﹣1,y1),(1,y1)和二次函数的性质可以判断y1和y1的大小关系.【详解】解:∵二次函数y=ax1+bx+c(a>0)图象的对称轴为直线x=1,∴当x>1时,y随x的增大而增大,当x<1时,y随x的增大而减小,∵该函数经过点(﹣1,y1),(1,y1),|﹣1﹣1|=1,|1﹣1|=1,∴y1>y1,故答案为:>.【点睛】本题考查了二次函数的增减性问题,掌握二次函数的性质是解题的关键.14、-2或1.【解析】将x=-3代入原方程,得9-3m+m2-19=0,m2-3m-10=0,(m-1)(m+2)=0,m=-2或1.故答案为-2或1.点睛:已知方程的一个实数根,要求方程中的未知参数,把根代入方程即可.15、或【分析】依据沿过点D的直线折叠,使直角顶点C落在斜边AB上的点E处,当△BDE是直角三角形时,分两种情况讨论:∠DEB=90°或∠BDE=90°,分别依据勾股定理或者相似三角形的性质,即可得到CD的长【详解】分两种情况:①若,则,,连接,则,,,设,则,中,,解得,;②若,则,,四边形是正方形,,,,,设,则,,,,解得,,综上所述,的长为或,故答案为或.【点睛】此题考查折叠的性质,勾股定理,全等三角形的判定与性质,解题关键在于画出图形16、【分析】直接根据平行线分线段成比例定理即可得.【详解】,,,,解得,故答案为:.【点睛】本题考查了平行线分线段成比例定理,熟记平行线分线段成比例定理是解题关键.17、【分析】把点,代入求解即可.【详解】解:由于反比例函数的图象经过点,∴把点,代入中,解得k=6,所以函数解析式为:故答案为:【点睛】本题考查待定系数法解函数解析式,掌握待定系数法的解题步骤正确计算是关键.18、1【分析】把x=2代入函数关系式即可求得.【详解】f(2)=3×22-2×2-1=1,

故答案为1.【点睛】此题考查二次函数图象上点的坐标特征,解题关键在于掌握函数图象上点的坐标适合解析式.三、解答题(共66分)19、解:(1)证明见解析;(2)⊙O的半径是7.5cm.【分析】(1)连接OD,根据平行线的判断方法与性质可得∠ODE=∠DEM=90°,且D在⊙O上,故DE是⊙O的切线.(2)由直角三角形的特殊性质,可得AD的长,又有△ACD∽△ADE.根据相似三角形的性质列出比例式,代入数据即可求得圆的半径.【详解】(1)证明:连接OD.∵OA=OD,∴∠OAD=∠ODA.∵∠OAD=∠DAE,∴∠ODA=∠DAE.∴DO∥MN.∵DE⊥MN,∴∠ODE=∠DEM=90°.即OD⊥DE.∵D在⊙O上,OD为⊙O的半径,∴DE是⊙O的切线.(2)解:∵∠AED=90°,DE=6,AE=3,∴.连接CD.∵AC是⊙O的直径,∴∠ADC=∠AED=90°.∵∠CAD=∠DAE,∴△ACD∽△ADE.∴.∴.则AC=15(cm).∴⊙O的半径是7.5cm.考点:切线的判定;平行线的判定与性质;圆周角定理;相似三角形的判定与性质.20、见解析.【解析】分析:首先根据题意写出已知和求证,再根据全等三角形的判定与性质,可得∠ACD与∠BCD的关系,根据平行四边形的邻角互补,可得∠ACD的度数,根据矩形的判定,可得答案.详解:已知:如图,在□ABCD中,AC=BD.求证:□ABCD是矩形.证明:∵四边形ABCD是平行四边形,∴AD∥CB,AD=BC,在△ADC和△BCD中,∵,∴△ADC≌△BCD,∴∠ADC=∠BCD.又∵AD∥CB,∴∠ADC+∠BCD=180°,∴∠ADC=∠BCD=90°.∴平行四边形ABCD是矩形.点睛:本题考查了矩形的判定,利用全等三角形的判定与性质得出∠ADC=∠BCD是解题关键.21、(1)x的值为11m或15m;(2)花园面积S的最大值为168平方米.【分析】(1)直接利用矩形面积公式结合一元二次方程的解法即可求得答案;(2)首先得到S与x的关系式,进而利用二次函数的增减性即可求得答案.【详解】(1)∵AB=xm,则BC=(26﹣x)m,∴x(26﹣x)=165,解得:x1=11,x2=15,答:x的值为11m或15m;(2)由题意可得出:S=x(26﹣x)=﹣x2+26x=﹣(x﹣13)2+169,由题意得:14≤x≤19,∵-1<0,14≤x≤19,∴S随着x的增大而减小,∴x=14时,S取到最大值为:S=﹣(14﹣13)2+169=168,答:花园面积S的最大值为168平方米.【点睛】本题考查了二次函数的应用以及一元二次方程的解法,正确结合二次函数的增减性求得最值是解题的关键.22、(1)见解析;(2)见解析.【分析】(1)由平行线的性质得出∠DME=∠CNE,∠MDE=∠ECN,可证明△MDE≌△NCE(AAS);(2)过点M作MG⊥BN于点G,由等腰三角形的性质得出BG=BN=BN,由中位线定理得出EF=BN,则可得出结论.【详解】解:(1)证明:∵四边形ABCD为矩形,∴AD//BC,∴∠DME=∠CNE,∠MDE=∠ECN,∵E为CD的中点,∴DE=CE,∴△MDE≌△NCE(AAS);(2)证明:过点M作MG⊥BN于点G,∵BM=MN,∴BG=BN=BN,∵矩形ABCD中,∠A=∠ABG=90°,又∵MG⊥BN,∴∠BGM=90°,∴四边形ABGM为矩形,∴AM=BG=,∵EF//BN,E为DC的中点,∴F为BM的中点,∴EF=BN,∴AM=EF.【点睛】本题考查了矩形的性质,等腰三角形的性质,中位线定理,全等三角形的判定与性质等知识,熟练掌握矩形的性质是解题的关键.23、(1)证明见解析;(2)【分析】(1)连结,由半径相等得到∠OBC=∠OCB,由垂径定理可知是的垂直平分线,得到PB=PC,因此∠PBC=∠PCB,从而可以得到∠PCO=90°,即可得证;(2)阴影部分的面积即为扇形OAC的面积减去△OAC的面积,通过,,利用扇形面积公式和三角形计算公式计算即可.【详解】(1)证明:连结,如图∵∴又∵为圆的直径,切圆于点∴,又∵∴∴是的垂直平分线∴,,即∴是圆的切线(2)由(1)知、为圆的切线∴∵,∴,又∵为圆的直径∴∴,∴,∴【点睛】本题考查了切线的判定和扇形面积公式的应用,理解弓形面积为扇形面积与三角形面积之差是解题的关键.24、(1)(4,8);x=6;(2)①;②(6,4);(3)或【分析】(1)根据矩形的性质即可求出点A的坐标,然后根据抛物线的对称性,即可求出抛物线的对称轴;(2)①将A、C两点的坐标代入解析式中,即可求出抛物线的表达式;②先利用待定系数法求出直线AC的解析式,然后设点E的坐标为,根据坐标特征求出点G的坐标,即可求出EG的长,利用二次函数求最值即可;(3)画出图象可知:当x=4时,若抛物线上的对应点位于点B的下方或当x=8时,抛物线上的对应点位于D点上方时,抛物线与矩形没有公共点,将x=4和x=8分别代入解析式中,列出不等式,即可求出b的取值范围.【详解】解:(1)∵矩形的三个顶点、、∴点A的横坐标与点B的横坐标相同,点A的纵坐标与点D的纵坐标相同∴点A的坐标为:(4,8)∵点A与点D的纵坐标相同,且A、D都在抛物线上∴点A和点D关于抛物线的对称轴对称∴抛物线的对称轴为:直线.故答案为:(4,8);x=6;(2)①将A、C两点的坐标代入,得解得:故抛物线的表达式为;②设直线AC的解析式为y=kx+c将A、C两点的坐标代入,得解得:∴直线AC的解析式为设点E的坐标为,∵EG⊥AD,AD∥x轴∴点E和点G的横坐标相等∵点G在抛物线上∴点G的坐标为∴EG===∵∴当时,EG有最大值,且最大值为2,将代入E点坐

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论