版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年八上数学期末模拟试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题(每题4分,共48分)1.下列运算中,正确的是()A. B. C. D.2.长为12、6、5、2的四根木条,选其中三根为边组成三角形,共有()选法A.4种 B.3种 C.2种 D.1种3.如图,ABCD是正方形场地,点E在DC的延长线上,AE与BC相交于点F,有甲、乙、丙三名同学同时从点A出发,甲沿着A﹣B﹣F﹣C的路径行走至C,乙沿着A﹣F﹣E﹣C﹣D的路径行走至D,丙沿着A﹣F﹣C﹣D的路径行走至D,若三名同学行走的速度都相同,则他们到达各自的目的地的先后顺序(由先至后)是()A.甲乙丙 B.甲丙乙 C.乙丙甲 D.丙甲乙4.点到轴的距离是().A.3 B.4 C. D.5.以下四家银行的行标图中,是轴对称图形的有()A.1个 B.2个 C.3个 D.4个6.若,则下列式子错误的是()A. B. C. D.7.某出租车起步价所包含的路程为0~2km,超过2km的部分按每千米另收费.津津乘坐这种出租车走了7km,付了16元;盼盼乘坐这种出租车走了13km,付了28元.设这种出租车的起步价为x元,超过2km后每千米收费y元,则下列方程正确的是()A. B.C. D.8.如图,AB=AD,要说明△ABC≌△ADE,需添加的条件不能是()A.∠E=∠C B.AC=AE C.∠ADE=∠ABC D.DE=BC9.据《经济日报》2018年5月21日报道:目前,世界集成电路生产技术水平最高已达到7nm(1nm=10﹣9m),主流生产线的技术水平为14~28nm,中国大陆集成电路生产技术水平最高为28nm.将28nm用科学记数法可表示为()A.28×10﹣9m B.2.8×10﹣8m C.28×109m D.2.8×108m10.一个等腰三角形的两边长分别为3和5,则它的周长为()A.11 B.12 C.13 D.11或1311.以下列各线段长为边,能组成三角形的是()A. B. C. D.12.若x2mx9是一个完全平方式,那么m的值是()A.9 B.18 C.6 D.6二、填空题(每题4分,共24分)13.已知(x-2018)2=15,则(x-2017)2+(x-2019)2的值是_________14.若关于的二元一次方程组的解是一对相反数,则实数__________.15.如图是一株美丽的勾股树,其中所有的四边形都是正方形,所有的三角形都是直角三角形,若正方形A、B、C、E的面积分别为2,5,1,1.则正方形D的面积是______.16.已知点A与B关于x轴对称,若点A坐标为(﹣3,1),则点B的坐标为____.17.如图,在中,,是的中点,,垂足为,,则的度数是______.18.计算:(x+a)(y-b)=______________________三、解答题(共78分)19.(8分)解分式方程:(1);(2)20.(8分)如图,四边形ABCD是直角梯形,AD∥BC,AB⊥AD,且AB=AD+BC,E是DC的中点,连结BE并延长交AD的延长线于G.(1)求证:DG=BC;(2)F是AB边上的动点,当F点在什么位置时,FD∥BG;说明理由.(3)在(2)的条件下,连结AE交FD于H,FH与HD长度关系如何?说明理由.21.(8分)如图,在中,平分交于点,点是边上一点,连接,若,求证:.22.(10分)计算(1)-+(2)23.(10分)“校园手机”现象越来越受社会的关注.春节期间,小飞随机调查了城区若干名同学和家长对中学生带手机现象的看法,统计整理并制作了如下的统计图:
(1)这次的调查对象中,家长有人;(2)图2中表示家长“赞成”的圆心角的度数为度;(3)开学后,甲、乙两所学校对各自学校所有学生带手机情况进行了统计,发现两校共有576名学生带手机,且乙学校带手机学生数是甲学校带手机学生数的,求甲、乙两校中带手机的学生数各有多少?24.(10分)如图,在△ABC中,AB=AC,AD平分∠CAB,N点是AB上的一定点,M是AD上一动点,要使MB+MN最小,请找点M的位置.25.(12分)如图,△ABC中,∠B=2∠C.(1)尺规作图:作AC的垂直平分线,交AC于点D,交BC于点E;(2)连接AE,求证:AB=AE26.现要在三角地ABC内建一中心医院,使医院到A、B两个居民小区的距离相等,并且到公路AB和AC的距离也相等,请确定这个中心医院的位置.
参考答案一、选择题(每题4分,共48分)1、D【分析】根据同底数幂乘法、幂的乘方、积的乘方、单项式的乘法等公式计算问题可解【详解】解:A.,故A错误;B.,故B错误;C.,故C错误;D.正确故应选D【点睛】本题考查了同底数幂乘法、幂的乘方、积的乘方、单项式的乘法等知识点,解答关键是根据运算法则进行计算.2、D【分析】根据题目给的四根木条进行分情况讨论,利用三角形形成的条件:任意两边之和大于第三边,任意两边之差小于第三边,即可求解.【详解】解:选其中三根为边组成三角形有以下四种选法:12、6、5,12、6、2,12、5、2,6、5、2;能组成三角形的有:6、5、2只有一种.故选:D.【点睛】本题主要考查的三角形的形成条件,正确的运用三角形的形成条件,把题目进行分类讨论是解题的关键.3、B【分析】本题考查了正方形的性质,直角三角形的性质的应用,题目比较典型,难度适中.根据正方形的性质得出AB=BC=CD=AD,∠B=∠ECF,根据直角三角形得出AF>AB,EF>CF,分别求出甲、乙、丙行走的距离,再比较即可.【详解】解:∵四边形ABCD是正方形,∴AB=BC=CD=AD,∠B=90°,甲行走的距离是AB+BF+CF=AB+BC=2AB;乙行走的距离是AF+EF+EC+CD;丙行走的距离是AF+FC+CD,∵∠B=∠ECF=90°,∴AF>AB,EF>CF,∴AF+FC+CD>2AB,AF+FC+CD<AF+EF+EC+CD,∴甲比丙先到,丙比乙先到,即顺序是甲丙乙,故选B.【点睛】本题考查1.正方形的性质;2.线段的性质:两点之间线段最短;3.比较线段的长短.4、B【分析】根据平面直角坐标系内的点到轴的距离就是横坐标的绝对值,即可得到结果.【详解】解:∵点的横坐标为-4,∴点到轴的距离是4,故选:B.【点睛】本题考查了平面直角坐标系内点的坐标,属于基础题目.5、C【解析】试题分析:根据轴对称图形的定义可知:第1个行标是轴对称图形;第2个行标不是轴对称图形;第3个行标是轴对称图形;第4个行标是轴对称图形;所以共3个轴对称图形,故选C.考点:轴对称图形6、B【分析】根据不等式的基本性质逐一判断即可.【详解】A.将不等式的两边同时减去3,可得,故本选项正确;B.将不等式的两边同时乘(-1),可得,再将不等式的两边同时加3,可得,故本选项错误;C.将不等式的两边同时加2,可得,所以,故本选项正确;D.将不等式的两边同时除以3,可得,故本选项正确.故选B.【点睛】此题考查的是不等式的变形,掌握不等式的基本性质是解决此题的关键.7、D【分析】根据津津乘坐这种出租车走了7km,付了16元;盼盼乘坐这种出租车走了13km,付了28元可列方程组.【详解】设这种出租车的起步价为x元,超过2km后每千米收费y元,则所列方程组为,故选D.【点睛】本题主要考查由实际问题抽象出二元一次方程组,解题的关键是理解题意,找到题目蕴含的相等关系.8、D【解析】∵AB=AD,且∠A=∠A,∴当∠E=∠C时,满足AAS,可证明△ABC≌△ADE,当AC=AE时,满足SAS,可证明△ABC≌△ADE,当∠ADE=∠ABC时,满足ASA,可证明△ABC≌△ADE,当DE=BC时,满足SSA,不能证明△ABC≌△ADE,故选D.9、B【解析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【详解】28nm=28×10﹣9m=2.8×10﹣8m,所以28nm用科学记数法可表示为:2.8×10﹣8m,故选B.【点睛】本题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.10、D【分析】根据等腰三角形的性质分两种情况讨论可得.【详解】①若等腰三角形的腰长为3,底边长为5,∵3+3=6>5,∴能组成三角形,∴它的周长是:3+3+5=11;②若等腰三角形的腰长为5,底边长为3,∵5+3=8>5,∴能组成三角形,∴它的周长是:5+5+3=1,综上所述,它的周长是:11或1.故选D.【点睛】此题考查了等腰三角形的性质与三角形三边关系.此题难度不大,解题的关键是注意分类讨论思想的应用,小心别漏解.11、D【分析】根据三角形任意两边之和大于第三边进行判断即可.【详解】A:,故不能构成三角形;B:,故不能构成三角形;C:,故不能构成三角形;D:,故可以构成三角形;故选:D.【点睛】本题主要考查了三角形三边的关系,熟练掌握相关概念是解题关键.12、D【分析】这里首末两项是x和3这两个数的平方,那么中间一项为加上或减去x和3积的2倍.【详解】解:∵x2+mx+9是一个完全平方式,
∴x2+mx+9=(x±3)2,
∴m=±6,
故选D.【点睛】此题主要考查了完全平方公式的应用;两数的平方和,再加上或减去它们积的2倍,就构成了一个完全平方式.注意积的2倍的符号,避免漏解.二、填空题(每题4分,共24分)13、1【分析】将变形为,将看作一个整体,利用完全平方公式展开后再代入已知条件即可.【详解】解:∵∴展开得:∵∴原式故答案为:1.【点睛】本题考查的知识点是整式的化简求值以及完全平方公式的应用,掌握完全平方公式的内容是解此题的关键.14、1【分析】由x、y互为相反数可得到x=-y,从而可求得x、y的值,于是可得到k的值.【详解】解:∵关于x、y的二元一次方程组的解是一对相反数,∴x=-y,∴-2y+3y=1,解得:y=1,则x=-1,∴k=-1+2×1=1,故答案为:1.【点睛】本题主要考查的是二元一次方程组的解和解二元一次方程组,求得x、y的值是解题的关键.15、2【分析】设中间两个正方形和正方形D的面积分别为x,y,z,然后有勾股定理解答即可.【详解】解:设中间两个正方形和正方形D的面积分别为x,y,z,则由勾股定理得:x=2+5=7;y=1+z;7+y=7+1+z=1;即正方形D的面积为:z=2.故答案为:2.【点睛】本题考查了勾股定理的应用,掌握在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方是解答此题的关键.16、(﹣3,﹣1)【分析】根据关于x轴对称的点的横坐标相等,纵坐标互为相反数,可得答案.【详解】解:点A与点B关于x轴对称,点A的坐标为(﹣3,1),则点B的坐标是(﹣3,﹣1).故答案为(﹣3,﹣1).【点睛】本题考查关于x轴对称的点的坐标,利用关于x轴对称的点的横坐标相等,纵坐标互为相反数是解题的关键.17、65【分析】首先根据三角形的三线合一的性质得到AD平分∠BAC,然后求得其一半的度数,从而求得答案.【详解】∵AB=AC,D为BC的中点,∴∠BAD=∠CAD,∵∠BAC=50°,∴∠DAC=25°,∵DE⊥AC,∴∠ADE=90°−25°=65°,故答案为65°.【点睛】本题考查了等腰三角形的性质,解题的关键是了解等腰三角形三线合一的性质,难度不大.18、xy+ay-bx-ab【分析】根据多项式乘以多项式的运算法则进行计算即可得到答案.【详解】(x+a)(y-b)=xy+ay-bx-ab.故答案为:xy+ay-bx-ab.【点睛】本题主要考查了多项式乘以多项式的运算法则,注意不要漏项,有同类项的合并同类项.三、解答题(共78分)19、(1)x=2;(2)x=2【解析】试题分析:(1)观察可得最简公分母是(x+1),方程两边乘最简公分母,可以把分式方程转化为整式方程求解;
(2)观察可得最简公分母是x(x-1),方程两边乘最简公分母,可以把分式方程转化为整式方程求解.试题解析:(1)方程两边乘x+1,得2x-x-1=1.解得x=2.经检验,x=2是原方程的解.(2)方程两边乘x(x-1),得x+4=3x.解得x=2.经检验,x=2是原方程的解.20、(1)见解析;(2)当F运动到AF=AD时,FD∥BG,理由见解析;(3)FH=HD,理由见解析【分析】(1)证明△DEG≌△CEB(AAS)即可解决问题.(2)想办法证明∠AFD=∠ABG=45°可得结论.(3)结论:FH=HD.利用等腰直角三角形的性质即可解决问题.【详解】(1)证明:∵AD∥BC,∴∠DGE=∠CBE,∠GDE=∠BCE,∵E是DC的中点,即DE=CE,∴△DEG≌△CEB(AAS),∴DG=BC;(2)解:当F运动到AF=AD时,FD∥BG.理由:由(1)知DG=BC,∵AB=AD+BC,AF=AD,∴BF=BC=DG,∴AB=AG,∵∠BAG=90°,∴∠AFD=∠ABG=45°,∴FD∥BG,故答案为:F运动到AF=AD时,FD∥BG;(3)解:结论:FH=HD.理由:由(1)知GE=BE,又由(2)知△ABG为等腰直角三角形,所以AE⊥BG,∵FD∥BG,∴AE⊥FD,∵△AFD为等腰直角三角形,∴FH=HD,故答案为:FH=HD.【点睛】本题考查了全等三角形的判定和性质,平行线的判定,等腰直角三角形的性质,掌握三角形全等的判定和性质是解题的关键.21、证明见解析【分析】先求出∠BAC的度数,进而得出∠BAD,因为∠BAD=40°=∠ADE,由“内错角相等,两直线平行”即可判断.【详解】证明:在中,,平分,【点睛】本题考查角的运算,角平分线的性质定理以及平行线的判定,掌握角平分线的性质是解题的关键.22、(1);(2)1.【分析】(1)先化简二次根式,再计算二次根式的乘法与加减法即可得;(2)先化简二次根式,再计算二次根式的乘除法与加法即可得.【详解】(1)原式,,;(2)原式,,,,.【点睛】本题考查了二次根式的加减乘除运算,熟练掌握运算法则是解题关键.23、(1)1;(2)36°;(3)甲:360,乙:216【分析】(1)认为无所谓的有80人,占总人数的20%,据此即可求得总人数;
(2)赞成的人数所占的比例是:,所占的比例乘以360°即可求解;
(3)甲、乙两校中带手机的学生数分别有x、y人,根据两校共有2384名学生带手机,且乙学校带手机的学生数是甲学校带手机学生数的
,即可列方程组,从而求解.【
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 商品招商合同范例
- 个人加盟餐饮合同范例
- 合同范例是正规合同
- 门店定制货架改造合同范例
- 临街商铺门面转让合同范例
- 钱款赠与合同范例格式
- 个人轮椅加工合同范例
- 訓練合同范例
- 1.2.2 元素周期律 课件-2021-2022学年人教版(2019)高中化学选择性必修二
- 粮食机械维修合同范例
- 考后心态调整主题班会
- 东北育才中学2024年高二上数学期末经典试题含解析
- 2023年公需科目考试试题及答案
- 年产1w吨生物柴油工厂设计-毕业(论文)设计
- 谈谈青年大学生在中国式现代化征程上的使命与担当范文(6篇)
- DB13-T 5660-2023 水文水井分层抽水技术规范
- 二年级上册综合实践测试卷
- 互联网金融外文文献翻译
- 产前筛查、诊断及新生儿疾病筛查
- 小学《科学》期末测评方案
- 友邦保险“愈从容”重疾专案管理服务手册(完整版)
评论
0/150
提交评论