




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
StatisticsforBusiness
andEconomicsAndersonSweeneyWilliamsSlidesbyJohnLoucksSt.Edward’sUniversityStatisticsforBusiness
andEcChapter20
StatisticalMethodsforQualityControlAcceptanceSampling|||||||||||||||||||||||||UCLCLLCLStatisticalProcessControlPhilosophiesandFrameworksChapter20
StatisticalMethodsQualityQualityis“thetotalityoffeaturesandcharacteristicsofaproductorservicethatbearsonitsabilitytosatisfygivenneeds.”Organizationsrecognizethattheymuststriveforhighlevelsofquality.Theyhaveincreasedtheemphasisonmethodsformonitoringandmaintainingquality.QualityQualityis“thetotalitTotalQuality(TQ)isapeople-focusedmanagementsystemthataimsatcontinualincreaseincustomersatisfactionatcontinuallylowerrealcost.TQisatotalsystemapproach(notaseparateworkprogram)andanintegralpartofhigh-levelstrategy.TQworkshorizontallyacrossfunctions,involvesallemployees,toptobottom,andextendsbackwardandforwardtoincludeboththesupplyandcustomerchains.TotalQualityTQstresseslearningandadaptationtocontinualchangeaskeystoorganizationsuccess.TotalQuality(TQ)isapeopleTotalQualityRegardlessofhowitisimplementedindifferentorganizations,TotalQualityisbasedonthreefundamentalprinciples:afocusoncustomersandstakeholdersparticipationandteamworkthroughouttheorganizationafocusoncontinuousimprovementandlearningTotalQualityRegardlessofhowQualityPhilosophiesDr.WalterA.Shewhart
Developedasetofprinciplesthatarethebasisforwhatisknowntodayasprocesscontrol
Constructedadiagramthatwouldnowberecognizedasastatisticalcontrolchart
Broughttogetherthedisciplinesofstatistics,engineering,andeconomicsandchangedthecourseofindustrialhistory
RecognizedasthefatherofstatisticalqualitycontrolFirsthonorarymemberofASQQualityPhilosophiesDr.WalterQualityPhilosophiesDr.W.EdwardsDemingHelpededucatetheJapaneseonqualitymanagementshortlyafterWorldWarIIStressedthatthefocusonqualitymustbeledbymanagersDevelopedalistof14pointshebelievedrepresentthekeyresponsibilitiesofmanagersJapannameditsnationalqualityawardthe
DemingPrizeinhishonorQualityPhilosophiesDr.W.EdwQualityPhilosophiesJosephJuranHelpededucatetheJapaneseonqualitymanagementshortlyafterWorldWarIIProposedasimpledefinitionofquality:
fitnessforuseHisapproachtoqualityfocusedonthreequalityprocesses:qualityplanning,quality
control,andqualityimprovementQualityPhilosophiesJosephJurQualityPhilosophiesOtherSignificantIndividualsPhilipB.CrosbyA.V.FeigenbaumKarouIshikawaGenichiTaguchiQualityPhilosophiesOtherSignQualityFrameworks
1.Leadership
2.StrategicPlanning
3.CustomerandMarketFocusIn2003,the“BaldrigeIndex”(ahypotheticalstockindexcomprisedofBaldrigeAwardwinningcompanies)outperformedtheS&P500by4.4to1.Establishedin1987andgivenbytheU.S.presidenttoorganizationsthatapplyandarejudgedtobeoutstandinginsevenareas:
4.Measurement,AnalysisandKnowledgeMgmt.
5.HumanResourceFocus
6.ProcessManagement
7.BusinessResultsMalcolmBaldrigeNationalQualityAwardQualityFrameworks1.LeadersQualityFrameworksThestandardsdescribetheneedfor:aneffectivequalitysystem,ensuringthatmeasuringandtestingequipmentiscalibratedregularly,andmaintaininganadequaterecord-keepingsystem.Aseriesoffivestandardspublishedin1987bytheInternationalOrganizationforStandardizationinGeneva,Switzerland.ISO9000ISO9000registrationdetermineswhetheracompanycomplieswithitsownqualitysystem.QualityFrameworksThestandarQualityFrameworksSixSigmaThemethodologycreatedtoreachthisqualitygoalisreferredtoasSixSigma.SixSigmaisamajortoolinhelpingorganizationsachieveBaldrigelevelsofbusinessperformanceandprocessquality.
Sixsigmalevelofqualitymeansthatforeverymillionopportunitiesnomorethan3.4defectswilloccur.QualityFrameworksSixSigmaThQualityFrameworksSixSigma(continued)x-6s-2s-4s+2s+4s+6s99.9999998%mLowerQualityLimitUpperQualityLimit-5s-3s-1s+1s+3s+5sRoughly2defectivesin10millionQualityFrameworksSixSigma(c
QCconsistsofmakingaseriesofinspectionsandmeasure-mentstodeterminewhetherqualitystandardsarebeingmet.QAreferstotheentiresystemofpolicies,procedures,andguide-linesestablishedbyanorganizationtoachieveandmaintainquality.QAconsistsoftwofunctions...
Itsobjectiveistoincludequalityinthedesignofproductsandprocessesandtoidentifypotentialqualityproblemspriortoproduction.QualityTerminologyQualityAssuranceQualityEngineeringQualityControl
StatisticalProcessControl(SPC)Outputoftheproductionprocessissampledandinspected.UsingSPCmethods,itcanbedeterminedwhether variationsinoutputareduetocommoncausesor assignablecauses.Thegoalisdecidewhethertheprocesscanbe continuedorshouldbeadjustedtoachieveadesired qualitylevel.StatisticalProcessControl(SCausesofProcessOutputVariationCommonCausesrandomlyoccurringvariationsinmaterials,humidity,temperature,...variationstheproducercannotcontrolprocessisinstatisticalcontrolprocessdoesnotneedtobeadjustedCausesofProcessOutputVariaCausesofProcessOutputVariationAssignableCausesnon-randomvariationsinoutputduetotoolswearingout,operatorerror,incorrectmachinesettings,poorqualityrawmaterial,...variationstheproducercancontrolprocessisoutofcontrolcorrectiveactionshouldbetakenCausesofProcessOutputVaria
Haisformulatedintermsoftheproductionprocessbeingoutofcontrol.NullHypothesisAlternativeHypothesisSPCHypotheses SPCproceduresarebasedonhypothesis-testingmethodology.
H0isformulatedintermsoftheproductionprocessbeingincontrol.HaisformulatedintermsofDecisionsandStateoftheProcessCorrectDecisionTypeIIErrorAllowout-of-controlprocesstocontinueCorrectDecisionTypeIErrorAdjustin-controlprocessReject
H0AdjustProcess
Accept
H0ContinueProcessH0TrueIn-ControlH0FalseOut-of-ControlDecisionStateofProductionProcessTypeIandTypeIIErrors
DecisionsandStateoftheProControlChartsSPCusesgraphicaldisplaysknownascontrolchartstomonitoraproductionprocess.Controlchartsprovideabasisfordecidingwhetherthevariationintheoutputisduetocommoncauses(incontrol)orassignablecauses(outofcontrol).ControlChartsSPCusesgraphicTwoimportantlinesonacontrolchartaretheuppercontrollimit(UCL)
andlowercontrollimit(LCL).ControlChartsTheselinesarechosensothatwhentheprocessisincontrol,therewillbeahighprobabilitythatthesamplefindingwillbebetweenthetwolines.Valuesoutsideofthecontrollimitsprovidestrongevidencethattheprocessisoutofcontrol.TwoimportantlinesonacontrThischartisusedtomonitortherangeofthemeasurementsinthesample.RChartVariablesControlChartsxChartThischartisusedifthequalityoftheoutputismeasuredintermsofavariablesuchaslength,weight,temperature,andsoon.xrepresentsthemeanvaluefoundinasampleoftheoutput.ThischartisusedtomonAttributesControlCharts
Thischartisusedtomonitorthenumberofdefectiveitemsinthesample.npChartpChartThischartisusedtomonitortheproportiondefectiveinthesample.AttributesControlChartsTxChartStructureUCLLCLProcessMeanWheninControlCenterLineTimexUpperControlLimitLowerControlLimitxChartStructureUCLLCLProcessControlLimitsforanxChartProcessMeanmandStandardDeviationsKnown
where:
n=samplesizeControlLimitsforanxChartPExample:GraniteRockCo.ControlLimitsforanxChart:ProcessMeanandStandardDeviationKnown
WhenGraniteRock’spackagingprocessisincontrol,theweightofbagsofcementfilledbytheprocessisnormallydistributedwithameanof50poundsandastandarddeviationof1.5pounds. Whatshouldbethecontrollimitsforsamplesof9bags?Example:GraniteRockCo.Cont=50,=1.5,n=9UCL=50+3(.5)=51.5LCL=50-3(.5)=48.5ControlLimitsforanxChart:ProcessMeanandStandardDeviationKnownCL=50=50,=1.5,n=9=ProcessMeanandStandardDeviationUnknown
ControlLimitsforanxChartwhere:
x=overallsamplemean
R=averagerange
A2=constantthatdependsonn;takenfrom“FactorsforControlCharts”table=_==ProcessMeanandStandardDevFactorsforxControlChart“FactorsforControlCharts”Table(Partial)FactorsforxControlChart“FaControlLimitsforanRChartProcessMeanandStandardDeviationUnknown
where:
R=averagerange
D3,D4=constantsthatdependonn;taken from“FactorsforControlCharts” table_ControlLimitsforanRChartPFactorsforRControlChart“FactorsforControlCharts”Table(Partial)FactorsforRControlChart“FaRChartInpractice,theRchartisusuallyconstructedbeforethexchart.IftheRchartindicatesthattheprocessvariabilityisincontrol,thenthexchartisconstructed.Becausethecontrollimitsforthexchartdependonthevalueoftheaveragerange,theselimitswillnothavemuchmeaningunlesstheprocessvariabilityisincontrol.RChartInpractice,theRcharControlLimitsforanRChart:ProcessMeanandStandardDeviationUnknownExample:GraniteRockCo. Thetwentysamples,collectedwhentheprocesswasincontrol,resultedinanoverallsamplemeanof50.01poundsandanaveragerangeof.322pounds. SupposeGranitedoesnotknowthetruemeanandstandarddeviationforitsbagfillingprocess.ItwantstodevelopxandRchartsbasedontwentysamplesof5bagseach.ControlLimitsforanRChart:UCL=RD4=.322(2.114)=.681_LCL=RD3=.322(0)=0_x=50.01,R=.322,n=5_=ControlLimitsforanRChart:ProcessMeanandStandardDeviationUnknownCL=R=.322_UCL=RD4=.322(2.114)=.6RChartforGraniteRockCo.0.0000.400.500.600.700.8005101520SampleNumberSampleRangeRLCLUCLControlLimitsforanRChart:ProcessMeanandStandardDeviationUnknownRChartforGraniteRockCo.0.x=50.01,R=.322,n=5_=UCL=x+A2R=50.01+.577(.322)=50.196=_LCL=x
-
A2R=50.01-.577(.322)=49.824=_ControlLimitsforanxChart:ProcessMeanandStandardDeviationUnknownCL=x=50.01=x=50.01,R=.322,n=549.749.849.950.005101520SampleNumberSampleMeanUCLLCLxChartforGraniteRockCo.ControlLimitsforanxChart:ProcessMeanandStandardDeviationUnknown49.749.849.950.005ControlLimitsforapChartwhere:assuming:
np
>5
n(1-p)>5Note:IfcomputedLCLisnegative,setLCL=0ControlLimitsforapChartwhControlLimitsforapChartEverycheckcashedordepositedatNorwestBankmustbeencodedwiththeamountofthecheckbeforeitcanbegintheFederalReserveclearingprocess.Theaccuracyofthecheckencodingprocessisofutmostimportance.Ifthereisanydiscrepancybetweentheamountacheckismadeoutforandtheencodedamount,thecheckisdefective.Example:NorwestBankControlLimitsforapChartTwentysamples,eachconsistingof400checks,wereselectedandexaminedwhentheencodingprocesswasknowntobeoperatingcorrectly.Thenumberofdefectivechecksfoundinthe20samplesarelistedbelow.ControlLimitsforapChartExample:NorwestBankTwentysamples,eachconsSupposeNorwestdoesnotknowtheproportionofdefectivechecks,p,fortheencodingprocesswhenitisincontrol.ControlLimitsforapChartWewilltreatthedata(20samples)collectedasonelargesampleandcomputetheaveragenumberofdefectivechecksforallthedata.Thatvaluecanthenbeusedtoestimatep.SupposeNorwestdoesnotknowNotethatthecomputedLCLisnegative.Estimatedp=128/((20)(400))=128/8000=.016ControlLimitsforapChartnp=400(.016)=6.4>5;n(1-p)=400(.984)=393.6>5NotethatthecomputedLCLisControlLimitsforapChart
EncodedChecksProportionDefective0.0000.0050.0100.0150.0200.0250.0300.0350.0400.04505101520SampleNumberSampleProportionpUCLLCLControlLimitsforapChartEControlLimitsforannpChartNote:IfcomputedLCLisnegative,setLCL=0assuming: np
>5
n(1-p)>5ControlLimitsforannpChartThelocationandpatternofpointsinacontrolchartenableustodetermine,withasmallprobabilityoferror,whetheraprocessisinstatisticalcontrol.Aprimaryindicationthataprocessmaybeoutofcontrolisadatapointoutsidethecontrollimits.InterpretationofControlChartsThelocationandpatternofp
Certainpatternsofpointswithinthecontrollimitscanbewarningsignalsofqualityproblems:alargenumberofpointsononesideofcenterlinesixorsevenpointsinarowthatindicateeitheranincreasingordecreasingtrendInterpretationofControlChartsCertainpatternsofpointswiAcceptanceSampling
Acceptancesamplingisastatisticalmethodthatenablesustobasetheaccept-rejectdecisionontheinspectionofasampleofitemsfromthelot.Theitemsofinterestcanbeincomingshipmentsofrawmaterialsorpurchasedpartsaswellasfinishedgoodsfromfinalassembly.AcceptanceSamplingAcceptanceAcceptanceSamplingAcceptancesamplinghasadvantagesover100%inspectionincluding:usuallylessexpensivelessproductdamageduetolesshandlingfewerinspectorsrequiredprovidesonlyapproachpossibleifdestructivetestingmustbeusedAcceptanceSamplingAcceptanceAcceptanceSamplingProcedureLotreceivedSampleselectedSampleditemsinspectedforqualityResultscomparedwithspecifiedqualitycharacteristicsAcceptthelotRejectthelotSendtoproductionorcustomerDecideondispositionofthelotQualityisnotsatisfactoryQualityissatisfactoryAcceptanceSamplingProcedureLAcceptanceSamplingThehypothesesare:
H0:Good-qualitylotAcceptancesamplingisbasedonhypothesis-testingmethodology.
Ha:Poor-qualitylotAcceptanceSamplingThehypothTheOutcomesofAcceptanceSamplingTypeIandTypeIIErrors
CorrectDecisionTypeIIErrorAcceptingaPoor-qualitylotCorrectDecisionTypeIErrorRejectingaGood-qualitylotReject
H0RejecttheLot
Accept
H0AccepttheLotH0TrueGood-QualityLotH0FalsePoor-QualityLotDecisionStateoftheLotTheOutcomesofAcceptanceSamBinomialProbabilityFunctionforAcceptanceSamplingProbabilityofAcceptingaLotwhere:
n=samplesize
p=proportionofdefectiveitemsinlot
x=numberofdefectiveitemsinsample
f(x)=probabilityofxdefectiveitemsinsampleBinomialProbabilityFunctionExample:AcceptanceSampling Aninspectortakesasampleof20itemsfromalot.Hispolicyistoacceptalotifnomorethan2defectiveitemsarefoundinthesample. Assumingthat5percentofalotisdefective,whatistheprobabilitythathewillacceptalot?Rejectalot?Example:AcceptanceSamplingExample:AcceptanceSamplingP(AcceptLot)=.3585+.3774+.1887=.9246P(AcceptLot)=f(0)+f(1)+f(2)n=20,c=2,andp=.05Example:Acceptanc
n=20,c=2,andp=.05Example:AcceptanceSamplingP(RejectLot)=1–P(AcceptLot) =1-.9246 =.0754 n=20,c=SelectinganAcceptanceSamplingPlanInformulatingaplan,managersmustspecifytwovaluesforthefractiondefectiveinthelot.a=theprobabilitythatalotwithp0defectiveswillberejectedb
=theprobabilitythatalotwith
p1defectiveswillbeacceptedSelectinganAcceptanceSampliThen,thevaluesofnandcareselectedthatresultinanacceptancesamplingplanthatcomesclosesttomeetingboththeaandb
requirementsspecified.SelectinganAcceptanceSamplingPlanThen,thevaluesofnandcaProbabilityofAcceptingtheLot0
510152001.00PercentDefectiveintheLotp0p1b(1-a)an=15,c=0p0=.03,p1=.15a=.3667,b=.0874OperatingCharacteristicCurveProbabilityofAcceptingtheLMultipleSamplingPlansAmultiplesamplingplanusestwoormorestagesofsampling.Multiplesamplingplansoftenresultinasmallertotalsamplesizethansingle-sampleplanswiththesameTypeIerrorandTypeIIerrorprobabilities.Ateachstagethedecisionpossibilitiesare:stopsamplingandacceptthelot,stopsamplingandrejectthelot,orcontinuesampling.MultipleSamplingPlansAmultiATwo-StageAcceptanceSamplingPlanInspectn1itemsFindx1defectiveitemsinthissamplex1
<
c1?x1
>
c2?Inspectn2additionalitemsAcceptthelotRejectthelotx1+x2
<
c3?Findx2defectiveitemsinthissampleYesYesNoNoNoYesFirstStageSecondStageATwo-StageAcceptanceSamplinEndofChapter20EndofChapter20StatisticsforBusiness
andEconomicsAndersonSweeneyWilliamsSlidesbyJohnLoucksSt.Edward’sUniversityStatisticsforBusiness
andEcChapter20
StatisticalMethodsforQualityControlAcceptanceSampling|||||||||||||||||||||||||UCLCLLCLStatisticalProcessControlPhilosophiesandFrameworksChapter20
StatisticalMethodsQualityQualityis“thetotalityoffeaturesandcharacteristicsofaproductorservicethatbearsonitsabilitytosatisfygivenneeds.”Organizationsrecognizethattheymuststriveforhighlevelsofquality.Theyhaveincreasedtheemphasisonmethodsformonitoringandmaintainingquality.QualityQualityis“thetotalitTotalQuality(TQ)isapeople-focusedmanagementsystemthataimsatcontinualincreaseincustomersatisfactionatcontinuallylowerrealcost.TQisatotalsystemapproach(notaseparateworkprogram)andanintegralpartofhigh-levelstrategy.TQworkshorizontallyacrossfunctions,involvesallemployees,toptobottom,andextendsbackwardandforwardtoincludeboththesupplyandcustomerchains.TotalQualityTQstresseslearningandadaptationtocontinualchangeaskeystoorganizationsuccess.TotalQuality(TQ)isapeopleTotalQualityRegardlessofhowitisimplementedindifferentorganizations,TotalQualityisbasedonthreefundamentalprinciples:afocusoncustomersandstakeholdersparticipationandteamworkthroughouttheorganizationafocusoncontinuousimprovementandlearningTotalQualityRegardlessofhowQualityPhilosophiesDr.WalterA.Shewhart
Developedasetofprinciplesthatarethebasisforwhatisknowntodayasprocesscontrol
Constructedadiagramthatwouldnowberecognizedasastatisticalcontrolchart
Broughttogetherthedisciplinesofstatistics,engineering,andeconomicsandchangedthecourseofindustrialhistory
RecognizedasthefatherofstatisticalqualitycontrolFirsthonorarymemberofASQQualityPhilosophiesDr.WalterQualityPhilosophiesDr.W.EdwardsDemingHelpededucatetheJapaneseonqualitymanagementshortlyafterWorldWarIIStressedthatthefocusonqualitymustbeledbymanagersDevelopedalistof14pointshebelievedrepresentthekeyresponsibilitiesofmanagersJapannameditsnationalqualityawardthe
DemingPrizeinhishonorQualityPhilosophiesDr.W.EdwQualityPhilosophiesJosephJuranHelpededucatetheJapaneseonqualitymanagementshortlyafterWorldWarIIProposedasimpledefinitionofquality:
fitnessforuseHisapproachtoqualityfocusedonthreequalityprocesses:qualityplanning,quality
control,andqualityimprovementQualityPhilosophiesJosephJurQualityPhilosophiesOtherSignificantIndividualsPhilipB.CrosbyA.V.FeigenbaumKarouIshikawaGenichiTaguchiQualityPhilosophiesOtherSignQualityFrameworks
1.Leadership
2.StrategicPlanning
3.CustomerandMarketFocusIn2003,the“BaldrigeIndex”(ahypotheticalstockindexcomprisedofBaldrigeAwardwinningcompanies)outperformedtheS&P500by4.4to1.Establishedin1987andgivenbytheU.S.presidenttoorganizationsthatapplyandarejudgedtobeoutstandinginsevenareas:
4.Measurement,AnalysisandKnowledgeMgmt.
5.HumanResourceFocus
6.ProcessManagement
7.BusinessResultsMalcolmBaldrigeNationalQualityAwardQualityFrameworks1.LeadersQualityFrameworksThestandardsdescribetheneedfor:aneffectivequalitysystem,ensuringthatmeasuringandtestingequipmentiscalibratedregularly,andmaintaininganadequaterecord-keepingsystem.Aseriesoffivestandardspublishedin1987bytheInternationalOrganizationforStandardizationinGeneva,Switzerland.ISO9000ISO9000registrationdetermineswhetheracompanycomplieswithitsownqualitysystem.QualityFrameworksThestandarQualityFrameworksSixSigmaThemethodologycreatedtoreachthisqualitygoalisreferredtoasSixSigma.SixSigmaisamajortoolinhelpingorganizationsachieveBaldrigelevelsofbusinessperformanceandprocessquality.
Sixsigmalevelofqualitymeansthatforeverymillionopportunitiesnomorethan3.4defectswilloccur.QualityFrameworksSixSigmaThQualityFrameworksSixSigma(continued)x-6s-2s-4s+2s+4s+6s99.9999998%mLowerQualityLimitUpperQualityLimit-5s-3s-1s+1s+3s+5sRoughly2defectivesin10millionQualityFrameworksSixSigma(c
QCconsistsofmakingaseriesofinspectionsandmeasure-mentstodeterminewhetherqualitystandardsarebeingmet.QAreferstotheentiresystemofpolicies,procedures,andguide-linesestablishedbyanorganizationtoachieveandmaintainquality.QAconsistsoftwofunctions...
Itsobjectiveistoincludequalityinthedesignofproductsandprocessesandtoidentifypotentialqualityproblemspriortoproduction.QualityTerminologyQualityAssuranceQualityEngineeringQualityControl
StatisticalProcessControl(SPC)Outputoftheproductionprocessissampledandinspected.UsingSPCmethods,itcanbedeterminedwhether variationsinoutputareduetocommoncausesor assignablecauses.Thegoalisdecidewhethertheprocesscanbe continuedorshouldbeadjustedtoachieveadesired qualitylevel.StatisticalProcessControl(SCausesofProcessOutputVariationCommonCausesrandomlyoccurringvariationsinmaterials,humidity,temperature,...variationstheproducercannotcontrolprocessisinstatisticalcontrolprocessdoesnotneedtobeadjustedCausesofProcessOutputVariaCausesofProcessOutputVariationAssignableCausesnon-randomvariationsinoutputduetotoolswearingout,operatorerror,incorrectmachinesettings,poorqualityrawmaterial,...variationstheproducercancontrolprocessisoutofcontrolcorrectiveactionshouldbetakenCausesofProcessOutputVaria
Haisformulatedintermsoftheproductionprocessbeingoutofcontrol.NullHypothesisAlternativeHypothesisSPCHypotheses SPCproceduresarebasedonhypothesis-testingmethodology.
H0isformulatedintermsoftheproductionprocessbeingincontrol.HaisformulatedintermsofDecisionsandStateoftheProcessCorrectDecisionTypeIIErrorAllowout-of-controlprocesstocontinueCorrectDecisionTypeIErrorAdjustin-controlprocessReject
H0AdjustProcess
Accept
H0ContinueProcessH0TrueIn-ControlH0FalseOut-of-ControlDecisionStateofProductionProcessTypeIandTypeIIErrors
DecisionsandStateoftheProControlChartsSPCusesgraphicaldisplaysknownascontrolchartstomonitoraproductionprocess.Controlchartsprovideabasisfordecidingwhetherthevariationintheoutputisduetocommoncauses(incontrol)orassignablecauses(outofcontrol).ControlChartsSPCusesgraphicTwoimportantlinesonacontrolchartaretheuppercontrollimit(UCL)
andlowercontrollimit(LCL).ControlChartsTheselinesarechosensothatwhentheprocessisincontrol,therewillbeahighprobabilitythatthesamplefindingwillbebetweenthetwolines.Valuesoutsideofthecontrollimitsprovidestrongevidencethattheprocessisoutofcontrol.TwoimportantlinesonacontrThischartisusedtomonitortherangeofthemeasurementsinthesample.RChartVariablesControlChartsxChartThischartisusedifthequalityoftheoutputismeasuredintermsofavariablesuchaslength,weight,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 出售转让网店合同样本
- 2024年份3月线上声乐教师虚拟演唱会分成补充协议
- 共享产权房合同样本
- 2025建屋合同(标准版)
- 农村浴室出售合同标准文本
- 农村地基打桩合同样本
- 打造智能社区的未来愿景计划
- 伐木工具租赁合同样本
- 2025合同的订立程序包括哪些步骤
- 农村收购土牛合同样本
- SLT278-2020水利水电工程水文计算规范
- 培养好习惯成就好人生主题班会
- 华为信用管理手册
- 《办公用品管理》课件
- 医院高风险意外事件应急措施和救护机制
- 模板-机房来访人员进出登记表
- 二级公路设计毕业设计(论文)-二级公路毕业设计
- 中国女性乳腺癌预防专家共识
- 0.4kv线路施工方案
- 《高值医用耗材临床应用点评制度》
- 蒸汽系统知识培训课件
评论
0/150
提交评论