2022年江苏省宿迁宿豫区四校联考八年级数学第一学期期末监测模拟试题含解析_第1页
2022年江苏省宿迁宿豫区四校联考八年级数学第一学期期末监测模拟试题含解析_第2页
2022年江苏省宿迁宿豫区四校联考八年级数学第一学期期末监测模拟试题含解析_第3页
2022年江苏省宿迁宿豫区四校联考八年级数学第一学期期末监测模拟试题含解析_第4页
2022年江苏省宿迁宿豫区四校联考八年级数学第一学期期末监测模拟试题含解析_第5页
已阅读5页,还剩19页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年八上数学期末模拟试卷注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题(每题4分,共48分)1.下列因式分解正确的是()A. B.C. D.2.如图,直线:交轴于,交轴于,轴上一点,为轴上一动点,把线段绕点逆时针旋转得到线段,连接,,则当长度最小时,线段的长为()A. B. C.5 D.3.某工厂的厂门形状如图(厂门上方为半圆形拱门),现有四辆装满货物的卡车,外形宽都是2.0米,高分别为2.8米,3.1米,3.4米,3.7米,则能通过该工厂厂门的车辆数是()(参考数据:,,)A.1 B.2 C.3 D.44.将下列多项式因式分解,结果中不含有因式(a+1)的是()A.a2-1B.a2+aC.a2+a-2D.(a+2)2-2(a+2)+15.在一组数﹣4,0.5,0,π,﹣,0.1010010001…(相邻两个1之间依次增加1个0)中,无理数有()个.A.1个 B.2个 C.3个 D.4个6.地球离太阳约有一亿五千万千米,一亿五千万用科学记数法表示是()A. B. C. D.7.在解分式方程时,我们第一步通常是去分母,即方程两边同乘以最简公分母(x﹣1),把分式方程变形为整式方程求解.解决这个问题的方法用到的数学思想是()A.数形结合 B.转化思想 C.模型思想 D.特殊到一般8.如图,中,,,为中点,,给出四个结论:①;②;③;④,其中成立的有()A.4个 B.3个 C.2个 D.1个9.在平面直角坐标系中,点P的坐标为(,1),则点P所在的象限是()A.第一象限 B.第二象限 C.第三象限 D.第四象限10.下列关于分式方程增根的说法正确的是()A.使所有的分母的值都为零的解是增根B.分式方程的解为零就是增根C.使分子的值为零的解就是增根D.使最简公分母的值为零的解是增根11.已知点在轴的负半轴,则点在().A.第一象限 B.第二象限 C.第三象限 D.第四象限12.下列各式中,正确的个数有(

)①+2=2②③④A.1个 B.2个 C.3个 D.0个二、填空题(每题4分,共24分)13.a,b互为倒数,代数式的值为__.14.已知,分别是的整数部分和小数部分,则的值为_______.15.如图,中,DE垂直平分BC交BC于点D,交AB于点E,,,则______.16.当______时,分式的值为0.17.已知,则____.18.如图,有一块四边形草地,,.则该四边形草地的面积是___________.三、解答题(共78分)19.(8分)如图,在中,是原点,是的角平分线.确定所在直线的函数表达式;在线段上是否有一点,使点到轴和轴的距离相等,若存在,求出点的坐标;若不存在,请说明理由;在线段上是否有一点,使点到点和点的距离相等,若存在,直接写出点的坐标;若不存在,请说明理由.20.(8分)观察下列一组等式,然后解答后面的问题,,,(1)观察以上规律,请写出第个等式:为正整数).(2)利用上面的规律,计算:(3)请利用上面的规律,比较与的大小.21.(8分)在平面直角坐标系网格中,格点A的位置如图所示:(1)若点B坐标为(2,3),请你画出△AOB;(2)若△AOB与△A′O′B′关于y轴对称,请你画出△A′O′B';(3)请直接写出线段AB的长度.22.(10分)如图所示,在△ABC中,BE平分∠ABC,DE∥BC.(1)试猜想△BDE的形状,并说明理由;(2)若∠A=35°,∠C=70°,求∠BDE的度数.23.(10分)我国边防局接到情报,近海处有一可疑船只A正向公海方向行驶,边防部迅速派出快艇B追赶(如图1).图2中l1、l2分别表示两船相対于海岸的距离s(海里)与追赶时间t(分)之间的关系.根据图象问答问题:(1)①直线l1与直线l2中表示B到海岸的距离与追赶时间之间的关系②A与B比较,速度快;③如果一直追下去,那么B(填能或不能)追上A;④可疑船只A速度是海里/分,快艇B的速度是海里/分(2)l1与l2对应的两个一次函数表达式S1=k1t+b1与S2=k2t+b2中,k1、k2的实际意义各是什么?并直接写出两个具体表达式(3)15分钟内B能否追上A?为什么?(4)当A逃离海岸12海里的公海时,B将无法对其进行检查,照此速度,B能否在A逃入公海前将其拦截?为什么?24.(10分)如图1,点是线段的中点,分别以和为边在线段的同侧作等边三角形和等边三角形,连结和,相交于点,连结,(1)求证:;(2)求的大小;(3)如图2,固定不动,保持的形状和大小不变,将绕着点旋转(和不能重叠),求的大小.25.(12分)如图,平面直角坐标系中,直线AB:y=﹣x+b交y轴于点A(0,4),交x轴于点B.(1)求直线AB的表达式和点B的坐标;(2)直线l垂直平分OB交AB于点D,交x轴于点E,点P是直线l上一动点,且在点D的上方,设点P的纵坐标为n.①用含n的代数式表示△ABP的面积;②当S△ABP=8时,求点P的坐标;③在②的条件下,以PB为斜边在第一象限作等腰直角△PBC,求点C的坐标.26.已知:三角形ABC中,∠A=90°,AB=AC,D为BC的中点.(1)如图,E、F分别是AB、AC上的点,且BE=AF,求证:△DEF为等腰直角三角形.(2)若E、F分别为AB,CA延长线上的点,仍有BE=AF,其他条件不变,那么,△DEF是否仍为等腰直角三角形?画出图形,写出结论不证明.

参考答案一、选择题(每题4分,共48分)1、D【分析】因式分解:把一个整式化为几个因式的积的形式.从而可以得到答案.【详解】A没有把化为因式积的形式,所以A错误,B从左往右的变形不是恒等变形,因式分解是恒等变形,所以B错误,C变形也不是恒等变形所以错误,D化为几个因式的积的形式,是因式分解,所以D正确.故选D.【点睛】本题考查的是多项式的因式分解,掌握因式分解的定义是解题关键.2、B【分析】作EH⊥x轴于H,通过证明△DBO≌△BEH,可得HE=OB,从而确定点点的运动轨迹是直线,根据垂线段最短确定出点E的位置,然后根据勾股定理求解即可.【详解】解:作EH⊥x轴于H,∵∠DBE=90°,∴∠DBC+∠CBE=90°.∵∠BHE=90°,∴∠BEH+∠CBE=90°,∴∠DBC=∠BEH.在△DBO和△BEH中,∵∠DBC=∠BEH,∠BOD=∠BHE,BD=BE,∴△DBO≌△BEH中,∴HE=OB,当y=0时,,∴x=3,∴HE=OB=3,∴点的运动轨迹是直线,B(3,0),∴当⊥m时,CE最短,此时点的坐标为(-1,3),∵B(-1,0),B(3,0),∴BC=4,∴BE′=,∴BD=BE′=4,∴OD=,∴CD=.故选B.【点睛】本题考查一次函数与坐标轴的交点,坐标与图形的变化,旋转变换、全等三角形的判定与性质,垂线段最短以及勾股定理等知识,解题的关键是确定点E的位置.3、B【分析】如图,在直角△COD中,根据勾股定理求出CD的长,进而可得CB的长,然后与四辆车的车高进行比较即得答案.【详解】解:∵车宽是2米,∴卡车能否通过,只要比较距厂门中线1米处高度与车高即可.如图,在直角△COD中,∵OC=2,OD=1,∴米,∴CB=CD+BD=1.73+1.6=3.33米.∵2.8<3.33,3.1<3.33,3.4>3.33,3.7>3.33,∴这四辆车中车高为2.8米和3.1米的能够通过,而车高为3.4米和3.7米的则不能通过.故选:B.【点睛】本题考查了勾股定理在实际中的应用,难度不大,解题的关键是正确理解题意、熟练掌握勾股定理.4、C【解析】试题分析:先把四个选项中的各个多项式分解因式,即a2﹣1=(a+1)(a﹣1),a2+a=a(a+1),a2+a﹣2=(a+2)(a﹣1),(a+2)2﹣2(a+2)+1=(a+2﹣1)2=(a+1)2,观察结果可得四个选项中不含有因式a+1的是选项C;故答案选C.考点:因式分解.5、B【分析】根据无理数的概念直接进行排除即可.【详解】由无理数是无限不循环小数,可得:在一组数﹣4,0.5,0,π,﹣,0.1010010001…(相邻两个1之间依次增加1个0)中,无理数有:π,0.1010010001…(相邻两个1之间依次增加1个0)两个;故选B.【点睛】本题主要考查无理数的概念,熟练掌握无理数的概念是解题的关键.6、A【解析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【详解】解:将一亿五千万用科学记数法表示为:1.5×1.

故选:A.【点睛】此题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.7、B【详解】解:在解分式方程时,我们第一步通常是去分母,即方程两边同乘以最简公分母(x﹣1),把分式方程变形为整式方程求解.解决这个问题的方法用到的数学思想是转化思想,故选B.【点睛】本题考查解分式方程;最简公分母.8、A【分析】根据等腰直角三角形的性质,得∠B=45°,∠BAP=45°,即可判断①;由∠BAP=∠C=45°,AP=CP,∠EPA=∠FPC,得∆EPA≅∆FPC,即可判断②;根据∆EPA≅∆FPC,即可判断③;由,即可判断④.【详解】∵中,,,为中点,∴∠B=45°,∠BAP=∠BAC=×90°=45°,即:,∴①成立;∵,,为中点,∴∠BAP=∠C=45°,AP=CP=BC,AP⊥BC,又∵,∴∠EPA+∠APF=∠FPC+∠APF=90°,∴∠EPA=∠FPC,∴∆EPA≅∆FPC(ASA),∴,②成立;∵∆EPA≅∆FPC,∴∴③成立,∵∆EPA≅∆FPC,∴,∴④成立.故选A.【点睛】本题主要考查等腰直角三角形的性质以及三角形全等的判定和性质定理,掌握等腰直角三角形的性质,是解题的关键.9、A【分析】根据平方数非负数判断出点P的横坐标是正数,再根据各象限内点的坐标特征解答.【详解】解:∵,∴,∴点P的横坐标是正数,∴点P(,1)所在的象限是第一象限.故选A.【点睛】本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).10、D【解析】试题分析:分式方程的增根是最简公分母为零时,未知数的值.解:分式方程的增根是使最简公分母的值为零的解.故选D.考点:分式方程的增根.11、D【分析】根据坐标轴上点的坐标特征,x轴负半轴上点的横坐标为负数,再根据相反数的意义和有理数的加法判断M的坐标符号.【详解】解:点在轴的负半轴,,,在第四象限,故选:D【点睛】本题考查了直角坐标系内点的坐标特征,正确理解坐标轴上点的坐标特征及有理数的加法法则是解答本题的关键.12、B【分析】利用二次根式加减运算法则分别判断得出即可.【详解】解:①原式=,错误;②原式=a,错误;③原式=,正确;④原式=5,正确.故答案为:B.【点睛】此题考查了二次根式的加减运算,正确合并二次根式是解题关键.二、填空题(每题4分,共24分)13、1【解析】对待求值的代数式进行化简,得∵a,b互为倒数,∴ab=1.∴原式=1.故本题应填写:1.14、【分析】先求出介于哪两个整数之间,即可求出它的整数部分,再用减去它的整数部分求出它的小数部分,再代入即可.【详解】∵,∴=,∴,∴,∴.【点睛】此题考查的是带根号的实数的整数部分和小数部分的求法,找到它的取值范围是解决此题的关键.15、【分析】利用线段垂直平分线的性质和等边对等角可得,从而可求得,再利用三角形内角和定理即可得解.【详解】解:∵DE垂直平分BC交BC于点D,,∴EC=BE,∴,∵,∴,∴.故答案为:.【点睛】本题考查垂直平分线的性质,等腰三角形的性质.理解垂直平分线的点到线段两端距离相等是解题关键.16、-3【分析】根据分式的值为零的条件可以求出的值.【详解】由分式的值为零的条件得,,

由,得,

∴或,

由,得.

综上,得.

故答案是:.【点睛】本题考查了分式的值为零的条件.若分式的值为零,需同时具备两个条件:(1)分子为1;(2)分母不为1.这两个条件缺一不可.17、1【分析】根据幂的乘方以及同底数幂乘法的逆用进行计算即可.【详解】解:∵,∴,故答案为:1.【点睛】本题主要考查了幂的乘方以及同底数幂的乘法,熟练掌握幂的运算性质是解答本题的关键.18、【分析】连接AC,根据勾股定理求出AC,根据勾股定理的逆定理求出△CAD是直角三角形,分别求出△ABC和△CAD的面积,即可得出答案.【详解】连结AC,在△ABC中,∵∠B=90°,AB=4m,BC=3m,∴AC==5(m),S△ABC=×3×4=6(m2),在△ACD中,∵AD=13m,AC=5m,CD=12m,∴AD2=AC2+CD2,∴△ACD是直角三角形,∴S△ACD=×5×12=30(m2).∴四边形ABCD的面积=S△ABC+S△ACD=6+30=36(m2)故答案为:.【点睛】本题考查了勾股定理,勾股定理的逆定理的应用,解此题的关键是能求出△ABC和△CAD的面积,注意:如果一个三角形的两边的平方和等于第三边的平方,那么这个三角形是直角三角形.三、解答题(共78分)19、(1);(2)存在,;(3)存在,,【分析】(1)设的表达式为:,将A、B的坐标代入即可求出直线AB的解析式;(2)过点作,交于,根据角平分线的性质可得,然后根据勾股定理求出AB,利用即可求出点C的坐标,利用待定系数法求出AC的解析式,设,代入解析式中即可求出点P的坐标;(3)根据AC的解析式设点Q的坐标为(b,),然后利用平面直角坐标系中任意两点之间的距离公式求出QA和QB,然后利用QA=QB列方程即可求出点Q的坐标.【详解】由题意得,设的表达式为:将代入得,解得:存在过点作交于是角平分线在Rt△AOB中,由题意得即有解得∴点C的坐标为:设直线AC的表达式为将代入,得解得:的表达式为设,代入得,存在点Q在AC上,设点Q的坐标为(b,)∴QA=,QB=∵QA=QB∴解得:b=∴【点睛】此题考查的是一次函数与图形的综合问题,掌握利用待定系数法求一次函数的解析式、勾股定理、角平分线的性质和平面直角坐标系中任意两点之间的距离公式是解决此题的关键.20、(1);(2)9;(3)【分析】(1)根据规律直接写出,(2)先找出规律,分母有理化,再化简计算.(3)先对两个式子变形,分子有理化,变为分子为1,再比大小.【详解】解:(1)根据题意得:第个等式为;故答案为;(2)原式;(3),,,.【点睛】本题是一道利用规律进行求解的题目,解题的关键是掌握平方差公式.21、(1)见解析;(2)见解析;(3)AB=.【分析】(1)根据点A、O、B的坐标,顺次连接即可得△AOB;(2)根据关于y轴对称的点的坐标特征可得出A′、B′、O′的坐标,顺次连接A′、O′、B′即可得△A′O′B';(3)利用勾股定理求出AB的长即可.【详解】(1)如图所示,△AOB即为所求;(2)∵△AOB与△A′O′B′关于y轴对称,∴A′(-3,2),B′(-2,3),O′(0,0),如图所示,△A′O′B'即为所求;(3)AB==.【点睛】本题考查了作图-轴对称变换,熟练掌握关于y轴对称的点的坐标特征是解题关键.22、(1)△BDE是等腰三角形,理由见解析;(2)∠BDE=105°【分析】(1)由角平分线和平行线的性质可得到∠BDE=∠DEB,可证得结论;(2)由∠A=35°,∠C=70°可求出∠ABC=75°,然后利用角平分线和平行线的性质可得到∠BDE=∠DEB即可求解.【详解】(1)△BDE是等腰三角形,理由:∵BE平分∠ABC,∴∠ABE=∠EBC,∵DE∥BC,∴∠DEB=∠EBC=∠ABE,∴BD=ED,∴△DBE为等腰三角形;(2)∵∠A=35°,∠C=70°,∴∠ABC=75°,∵BE平分∠ABC,DE∥BC,∴∠DEB=∠EBC=∠ABE=37.5°,∴∠BDE=105°.【点睛】本题考查了等腰三角形的判定与性质,角平分线和平行线的性质,解题的关键是熟练掌握等腰三角形的判定与性质.23、(1)①直线l1,②B,③能,④0.2,0.5;(2)k1、k2的实际意义是分别表示快艇B的速度和可疑船只的速度,S1=0.5t,S2=0.2t+5;(3)15分钟内B不能追上A,见解析;(4)B能在A逃入公海前将其拦截,见解析【分析】(1)①根据题意和图形,可以得到哪条直线表示B到海岸的距离与追赶时间之间的关系;②根据图2可知,谁的速度快;③根据图形和题意,可以得到B能否追上A;④根据图2中的数据可以计算出可疑船只A和快艇B的速度;(2)根据(1)中的结果和题意,可以得到k1、k2的实际意义,直接写出两个函数的表达式;(3)将t=15代入分别代入S1和S2中,然后比较大小即可解答本题;(4)将12代入S2中求出t的值,再将这个t的值代入S1中,然后与12比较大小即可解答本题.【详解】解:(1)①由已知可得,直线l1表示B到海岸的距离与追赶时间之间的关系;故答案为:直线l1;②由图可得,A与B比较,B的速度快,故答案为:B;③如果一直追下去,那么B能追上A,故答案为:能;④可疑船只A速度是:(7﹣5)÷10=0.2海里/分,快艇B的速度是:5÷10=0.5海里/分,故答案为:0.2,0.5;(2)由题意可得,k1、k2的实际意义是分别表示快艇B的速度和可疑船只的速度,S1=0.5t,S2=0.2t+5;(3)15分钟内B不能追上A,理由:当t=15时,S2=0.2×15+5=8,S1=0.5×15=7.5,∵8>7.5,∴15分钟内B不能追上A;(4)B能在A逃入公海前将其拦截,理由:当S2=12时,12=0.2t+5,得t=35,当t=35时,S1=0.5×35=17.5,∵17.5>12,∴B能在A逃入公海前将其拦截.【点睛】本题考查一次函数的应用,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.24、(1)证明见解析;(2)∠AEB=60°;(3)∠AEB=60°.【解析】(1)由等边三角形的性质可得,,继而可得∠AOC=∠DOB,利用SAS证明,利用全等三角形的性质即可得;;(2)先证明,从而可得∠ODB=∠DBO,再利用三角形外角的性质可求得,,进而根据即可求得答案;(3)证明,从而可得,再由,可得,设与交于点,利用三角形内角和定理以及对顶角的性质即可求得.【详解】(1)∵和均为等边三角形,∴,,∴,即∠AOC=∠DOB,∴(SAS)∴;(2)∵O为AD中点,∴DO=AO,∵OA=OB,∴,∴∠ODB=∠DBO,∵∠ODB+∠DBO=∠AOB=60°,∴同理,,∴;(3)∵,∴,∴,又∵CO=DO,AO=BO,AO=DO,∴OC=OB,∴(SAS),∴,∵,∴,∴,设与交于点,∵,,又,∴.【点睛】本题考查了等边三角形的性质,全等三角形的判定与性质,三角形内角和定理,三角形外角性质,综合性较强,准确识图,熟练掌握和灵活运用相关知识是解题的关键.25、(1)y=﹣x+1,点B的坐标为(1,0);(2)①2n﹣1;②(2,3);③3,1).【分析】(1)把点A的坐标代入直线解析式可求得b=1,则直线的解析式为y=﹣x+1,令y=0可求得x=1,故此可求得点B的坐标;(2)①由题l垂直平分OB可知OE=BE=2,将x=2代入直线AB的解析式可求得点D的坐标,设点P的坐标为(2,n),然后依据S△APB=S△APD+S△BPD可得到△APB的面积与n的函数关系式为S△APB=2n﹣1;②由S△ABP=8得到关于n的方程可求得n的值,从而得到点P的坐标;③如图1所示,过点C作CM⊥l,垂足为M,再过点B作BN⊥CM于点N.设点C的坐标为(p,q),先证明△PCM≌△CBN,得到CM=BN,PM=CN,然后由CM=BN,PM=CN列出关于p、q的方程组可求得p、q的值;如图2所示,同理可求得点C的坐标.【详解】(1)∵把A(0,1)代入y=﹣x+b得b=1∴直线AB的函数表达式为:y=﹣x+1.令y=0得:﹣x+1=0,解得:x=1∴点B的坐标为(1,0).(2)①∵l垂直平分OB,∴OE=BE=2.∵将x=2代入y=﹣x+1得:y=﹣2+1=2.∴点D的坐标为(2,2).∵点P的坐标为(2,n),∴PD=n﹣2.∵S△APB=S△APD+S△BPD,∴S△ABP=PD•OE+PD•BE=(n﹣2)×2+(n﹣2)×2=2n﹣1.②∵S△ABP=8,∴2n﹣1=8,解得:n=3.∴点P的坐标为(2,3).③如图1所示:过点C作CM⊥l,垂足为M,再过点B作BN⊥CM于点N.设点C(p,q).∵△PBC为等腰直角三角形,PB为斜边,∴PC=CB,∠PCM+∠MCB=90°.∵CM⊥l,BN⊥CM,∴∠PMC=∠BNC=90°,∠MPC+∠PCM=9

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论