生物化学与分子生物学常考名词解释大全_第1页
生物化学与分子生物学常考名词解释大全_第2页
生物化学与分子生物学常考名词解释大全_第3页
生物化学与分子生物学常考名词解释大全_第4页
生物化学与分子生物学常考名词解释大全_第5页
已阅读5页,还剩17页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1蛋白质的二级结构是指多肽链的主链骨架中若干肽单位,各自沿一定的轴盘旋或折叠,并以氢键为次级键而形成有规则的构象,如α螺旋β折叠β转角等。2肽单位:肽键是构成在分子的基本化学键,肽键与相邻的原子所组成的基团,成为肽单位或肽平面。3结构域是位于超二级结构和三级结构间的一个层次。结构域是在蛋白质的三级结构内的独立折叠单元,其通常都是几个超二级结构单元的组合。在较大的蛋白质分子中,由于多肽链上相邻的超二级结构紧密联系,进一步折叠形成一个或多个相对独立的致密的三维实体,即结构域。4超二级结构又称模块或膜序是指在多肽内顺序上相邻的二级结构常常在空间折叠中靠近,彼此相互作用,形成有规则的二级结构聚集体。5三级结构具有二级结构、超二级结构或结构域的一条多肽链,由于其序列上相隔较远的氨基酸残基侧链的相互作用,而进行范围更广泛的盘曲与折叠,形成包括主、测链在内的空间排列,这种在一条多肽链中所有原子和基团在三维空间的整体排布称为三级结构。6一级结构蛋白质多肽链中氨基酸的排列顺序,以及二硫键的位置。7四级结构多亚基蛋白质分子中各个具有三级结构的多肽链,以适当的方式聚合所形成的蛋白质的三维结构。8增色效应增色效应或高色效应。由于DNA变性引起的光吸收增加称增色效应,也就是变性后DNA溶液的紫外吸收作用增强的效应。9固定化酶不溶于水的酶。是用物理的或化学的方法使酶与水不溶性大分子载体结合或把酶包埋在水不溶性凝胶或半透膜的微囊体中制成的。10脂肪酸的β氧化饱和脂肪酸在一系列酶的作用下,羧基端的β位C原子发生氧化,C链在α位C原子与β位C原子间发生断裂,每次生成一个乙酰CoA和较原来少两个C单位的脂肪酸,这个不断重复进行的脂肪酸氧化过程称为脂肪酸的β氧化。11脂肪酸的β-氧化基本过程:丁酰CoA经最后一次β氧化:生成2分子乙酰CoA。故每次β氧化1分子脂酰CoA生成1分子FADH2,1分子NADH+H+,1分子乙酰CoA,通过呼吸链氧化前者生成2分子ATP,后者生成3分子ATP。12尿素循环肝脏是动物生成尿素的主要器官,由于精氨酸酶的作用使精氨酸水解为鸟氨酸及尿素。精氨酸在释放了尿素后产生的鸟氨酸,和氨甲酰磷酸反应产生瓜氨酸,瓜氨酸又和天冬氨酸反应生成精氨基琥珀酸,精氨基琥珀酸为酶裂解,产物为精氨酸及延胡索酸。由于精氨酸水解在尿素生成后又重新反复生成,故称尿素循环。13操纵子指启动基因、终止基因和一系列紧密连锁的结构基因的总称。原核生物大多数基因表达调控是通过操纵子机制实现的。操纵子通常由2个以上的编码序列与启动序列、操纵序列以及其他调节序列在基因组中成簇串联组成。启动序列是RNA聚合酶结合并起动转录的特异DNA序列。多种原核基因启动序列特定区域内,通常在转录起始点上游-10及-35区域存在一些相似序列,称为共有序列。大肠杆菌及一些细菌启动序列的共有序列在-10区域是TATAAT,又称Pribnow盒,在-35区域为TTGACA。这些共有序列中的任一碱基突变或变异都会影响RNA聚合酶与启动序列的结合及转录起始。因此,共有序列决定启动序列的转录活性大小。操纵序列是原核阻遏蛋白的结合位点。当操纵序列结合阻遏蛋白时会阻碍RNA聚合酶与启动序列的结合,或使RNA聚合酶不能沿DNA向前移动,阻遏转录,介导负性调节。原核操纵子调节序列中还有一种特异DNA序列可结合激活蛋白,使转录激活,介导正性调节。14氧化磷酸化是物质在体内氧化时释放的能量供给ADP与无机磷合成ATP的偶联反应。主要在线粒体中进行。15单核苷酸多态性主要是指在基因组水平上由单个核苷酸的变异所引起的DNA序列多态性。16分子伴侣存在于原核生物和真核生物细胞质以及细胞器中可协助新生肽链正确折叠的一类蛋白质。17回文结构:双链DNA中含有的二个结构相同、方向相反的序列称为反向重复序列,也称为回文结构,每条单链以任一方向阅读时都与另一条链的序列是一致的,例如5'GGTACC3'3'CCATGG5'.18同工酶来源于同一种系、机体或细胞的同一种酶具有不同的形式。催化同一化学反应而化学组成不同的一组酶。产生同工酶的主要原因是在进化过程中基因发生变异,而其变异程度尚不足以成为一个新酶。19拓扑异构酶DNA拓扑异构酶是存在于细胞核内的一类酶,他们能够催化DNA链的断裂和结合,从而控制DNA的拓扑状态。20主要存在两种哺乳动物拓扑异构酶。DNA拓扑异构酶I通过形成短暂的单链裂解-结合循环,催化DNA复制的拓扑异构状态的变化;相反,拓扑异构酶II通过引起瞬间双链酶桥的断裂,然后打通和再封闭,以改变DNA的拓扑状态21密码子兼并性除了甲硫氨酸和色氨酸外,每一个氨基酸都至少有两个密码子。这样可以在一定程度内,使氨基酸序列不会因为某一个碱基被意外替换而导致氨基酸错误。22由3个相邻的核苷酸组成的信使核糖核酸(mRNA)基本编码单位。有64种密码子,其中有61种氨基酸密码子(包括起始密码子)及3个终止密码子,由它们决定多肽链的氨基酸种类和排列顺序的特异性以及翻译的起始和终止。特点:①.遗传密码子是三联体密码:一个密码子由信使核糖核酸上相邻的三个碱基组成②密码子具有通用性:不同的生物密码子基本相同,即共用一套密码子③遗传密码子无逗号:两个密码子间没有标点符号,密码子与密码子之间没有任何不编码的核苷酸,读码必须按照一定的读码框架,从正确的起点开始,一个不漏地一直读到终止信号④遗传密码子不重叠,在多核苷酸链上任何两个相邻的密码子不共用任何核苷酸⑤密码子具有简并性:除了甲硫氨酸和色氨酸外,每一个氨基酸都至少有两个密码子。这样可以在一定程度内,使氨基酸序列不会因为某一个碱基被意外替换而导致氨基酸错误⑥密码子阅读与翻译具有一定的方向性:从5'端到3'端⑦有起始密码子和终止密码子,起始密码子有两种,一种是甲硫氨酸(AUG),一种是缬氨酸(GUG),而终止密码子(有3个,分别是UAA、UAG、UGA)没有相应的转运核糖核酸(tRNA)存在,只供释放因子识别来事先翻译的终止。在信使RNA中,碱基代码A代表腺嘌呤,G代表鸟嘌呤,C代表胞嘧啶,U代表尿嘧啶23一碳单位就是指具有一个碳原子的基团。指某些氨基酸分解代谢过程中产生含有一个碳原子的基团,包括甲基、亚甲基、甲烯基、甲炔基、甲酚基及亚氨甲基等。一碳单位具有以下下两个特点:1.不能在生物体内以游离形式存在;2.必须以四氢叶酸为载体。能生成一碳单位的氨基酸有:丝氨酸、色氨酸、组氨酸、甘氨酸。另外蛋氨酸(甲硫氨酸)可通过S-腺苷甲硫氨酸(SAM)提供“活性甲基”(一碳单位),因此蛋氨酸也可生成一碳单位。24遗传基因组学是将微阵列技术和数量性状座位分析结合起来,全基因组水平上定位基因表达的QTL.它为研究复杂性状的分子机理和调控网络提供全新的手段.25氧化磷酸化是物质在体内氧化时释放的能量供给ADP与无机磷合成ATP的偶联反应。主要在线粒体中进行。在真核细胞的线粒体或细菌中,物质在体内氧化时释放的能量供给ADP与无机磷合成ATP的偶联反应。26酶的活性中心:酶分子中氨基酸残基的侧链有不同的化学组成。其中一些与酶的活性密切相关的化学基团称作酶的必需基团。这些必需基团在一级结构上可能相距很远,但在空间结构上彼此靠近,组成具有特定空间结构的区域,能和底物特异结合并将底物转化为产物。这一区域称为酶的活性中心或活性部位27酶的活性单位酶的活性单位指在一定的作用条件下,酶促反应中单位时间内作用物的消耗量或产物的生成量。28粘多糖粘多糖是含氮的不均一多糖,是构成细胞间结缔组织的主要成分,也广泛存在于哺乳动物各种细胞内。化学组成为糖醛酸和酪氨基己糖交替出现,有时含硫键。也称为糖胺聚糖。重要的粘多糖有:硫酸皮肤素,硫酸类肝素,硫酸角质素,硫酸软骨素和透明质酸等29固定化酶不溶于水的酶。是用物理的或化学的方法使酶与水不溶性大分子载体结合或把酶包埋在水不溶性凝胶或半透膜的微囊体中制成的。30必需脂肪酸:维持哺乳动物正常生长所必需的,而动物又不能合成的脂肪酸,如亚油酸,亚麻酸。31蛋白质的等电点在某一pH的溶液中,氨基酸解离成阳离子和阴离子的趋势及程度相等,所带净电荷为零,呈电中性,此时溶液的pH称为该氨基酸的等电点。32乳糖操纵子:大肠杆菌中控制β半乳糖苷酶诱导合成的操纵子。包括调控元件P(启动子)和O(操纵基因),以及结构基因lacZ、lacY和lacA。在没有诱导物时,调节基因lacI编码阻遏蛋白,与操纵基因O结合后抑制结构基因转录;乳糖的存在可与lac阻遏蛋白结合诱导结构基因转录,以代谢乳糖33载脂蛋白:血淋巴中的一种脂蛋白,专门穿梭运送脂肪从其贮存处(脂肪体)和吸收处(中肠)到利用它的组织和细胞处。34肽图:单一蛋白质或不太复杂的蛋白质混合物经降解(通常利用专一性较强的蛋白酶)得到的产物,通过层析和电泳,以及质谱等手段分离鉴定后,得到的表征蛋白质和混合物特征性的图谱或模式。可作为对蛋白质比较和分析的依据。转氨酶:是催化氨基酸与酮酸之间氨基转移的一类酶35基因表达调控指位于基因组内的基因如何被表达成为有功能的蛋白质(或RNA),在什么组织中表达,什么时候表达,表达多少等等。在内、外环境因子作用下,基因表达在多层次受多种因子调控。基因表达调控的异常是造成突变和疾患的重要原因。36基因表达是指细胞在生命过程中,把储存在DNA顺序中遗传信息经过转录和翻译,转变成具有生物活性的蛋白质分子。生物体内的各种功能蛋白质和酶都是同相应的结构基因编码的。37诱导酶是在环境中有诱导物(一般是反应的底物)存在时,微生物会因诱导物存在而产生一种酶就是诱导酶,诱导酶的合成除取决于环境中诱导物外,还受基因控制即受内因和外因共同控制。38非竞争性抑制非竞争性抑制抑制物与底物分别结和在酶的不同位点,通过引起酶失活而起到抑制39自杀底物底物在酶催化作用下所形成的反应中间物或最终产物,可以共价修饰酶活性部位的必需基团从而导致酶不可逆失活。40反竞争性抑制对酶活性的一种抑制作用,由于所加入的抑制剂能与酶-底物复合物结合,而不与游离酶结合,所以其特征是反应的最大速度比未加抑制剂时反应的最大速度低,当以速度的倒数相对底物浓度的倒数作图,所得图线与未被抑制反应的图线平行。41离子交换色谱离子交换色谱中的固定相是一些带电荷的基团,这些带电基团通过静电相互作用与带相反电荷的离子结合。如果流动相中存在其他带相反电荷的离子,按照质量作用定律,这些离子将与结合在固定相上的反离子进行交换。核酸的变性:核酸在理、化因素作用下,双螺旋结构破坏称核酸变性。二维电泳:蛋白质二维电泳实验是利用蛋白质的等电点和分子量将样品中总蛋白分开。42底物水平磷酸化:含有高能键的物质,其高能键断裂后,释放高能磷酸基团,使ADP磷酸化生成ATP的过程,被称为底物水平磷酸化作用43酶的活性部位:酶分子中能同底物结合并起催化反应的空间部位,由结合部位和催化部位所组成44RNA剪接:从DNA模板链转录出的最初转录产物中除去内含子,并将外显子连接起来形成一个连续的RNA分子的过程。45限制性内切酶:生物体内能识别并切割特异的双链DNA序列的一种内切核酸酶。它可以将外来的DNA切断的酶,即能够限制异源DNA的侵入并使之失去活力,但对自己的DNA却无损害作用,这样可以保护细胞原有的遗传信息。由于这种切割作用是在DNA分子内部进行的,故名限制性内切酶46干细胞工程:干细胞生物工程是利用干细胞在一定条件下进行分化,形成任何类型的组织和器官,实现组织器官等的无排斥移植,干细胞及其相关产品的研发和产品中试工艺流程的设计;干细胞及其相关产品应用基础和临床前动物实验;干细胞及其相关产品的临床试验和新的临床移植技术研究等工作的工程。47干细胞是一类未分化的细胞或原始细胞,是具有自我复制能力的多潜能细胞。在一定的条件下,干细胞可以分化成机体内的多功能细胞,形成任何类型的组织和器官,以实现机体内部建构和自我康复能力。现将干细胞生物工程研究进展情况,作简要介绍:48抗代谢物:在微生物生长过程中常常需要一些生长因子才能正常生长,可以利用生长因子的结构类似物干扰集体的正常代谢,以达到抑制微生物生长的目的。此类生长因子的结构类似物又称为抗代谢物。49联合脱氨作用:转氨基与谷氨酸氧化脱氨或是嘌呤核苷酸循环联合脱氨,以满足机体排泄含氮废物的需求。50诱导契合学说:酶对于它所作用的底物有着严格的选择,它只能催化一定结构或者一些结构近似的化合物,使这些化合物发生生物化学反应。有的科学家提出,酶和底物结合时,底物的结构和酶的活动中心的结构十分吻合,就好像一把钥匙配一把锁一样。酶的这种互补形状,使酶只能与对应的化合物契合,从而排斥了那些形状、大小不适合的化合物,这就是“锁和钥匙学说”。51酶原激活:某些酶在细胞内合成或初分泌时没有活性,这些没有活性的酶的前身称为酶原,使酶原转变为有活性酶的作用称为酶原激活。52酶原激活的本质是切断酶原分子中特异肽键或去除部分肽段,即酶原在一定条件下被打断一个或几个特殊的肽键,从而使酶构象发生一定的变化,形成具有活性的三维结构的过程。53凝胶过滤:它根据分子量大小来分离分子。凝胶基质由特定大小孔隙的球形小珠组成,不同分子量的分子从孔中排阻通过,发生分离。54蛋白质的互补作用:将富含某种必需氨基酸的食物与缺乏该种氨基酸的食物互相搭配混合食用,使混合后的必需氨基酸成分更接近人体适合比值,从而提高蛋白质的生物学价值.此称为蛋白质的互补作用55三羧酸循环:体内物质糖类、脂肪或氨基酸有氧氧化的主要过程。通过生成的乙酰辅酶A与草酰乙酸缩合生成柠檬酸(三羧酸)开始,再通过一系列氧化步骤产生CO2、NADH及FADH2,最后仍生成草酰乙酸,进行再循环,从而为细胞提供了降解乙酰基而提供产生能量的基础。56RNA干扰:是指在进化过程中高度保守的、由双链RNA诱发的、同源mRNA高效特异性降解的现象。由于使用RNAi技术可以特异性剔除或关闭特定基因的表达,所以该技术已被广泛用于探索基因功能和传染性疾病及恶性肿瘤的基因治疗领域。57基因沉默:基因沉寂也可以被称为“基因沉默”。基因沉寂是真核生物细胞基因表达调节的一种重要手段。在染色体水平,基因沉寂实际上是形成异染色质的过程,被沉寂的基因区段呈高浓缩状态58随体DNA则是指在DNA密度梯度离心时,处于卫星带中的DNA.真核生物的核内DNA。59Z-DNA:是DNA双螺旋结构的一种形式,具有左旋型态的双股螺旋,并呈现锯齿形状。Z-DNA为三种具生物活性的DNA双螺旋结构之一,另两种为A-DNA与B-DNA。60蛋白质的变性在热、酸、碱、重金属盐、紫外线等作作用下,蛋白质会发生性质上的改变而凝结起来.这种凝结是不可逆的,不能再使它们恢复成原来的蛋白质.蛋白质的这种变化叫做变性.61共价调节酶是一类由其它酶对其结构进行可逆共价修饰,使其处于活性和非活性的互变状态,从而调节酶活性。62低密度脂蛋白血浆脂蛋白的一种,是血液中胆固醇的主要载体。LDL的功能是转运胆固醇到外围组织,并调节这些部血浆脂蛋白位的胆固醇从头合成。63乳酸循环在激烈运动时,糖酵解的速度超过通过呼吸链再形成NAD+的速度,这时肌肉中酵解形成的丙酮酸由乳酸脱氢酶转变为乳酸,使NAD+再生,使酵解过程继续进行,肌肉中的乳酸扩散到血液并随着血液进入肝脏细胞,在肝细胞内通过葡萄糖异生途径转变为葡萄糖,又回到血液随血液供应肌肉和脑对葡萄糖的需要。这个循环过程称为可立氏循环。64细胞凋亡:凋零也称凋亡,是生理性器官系统成熟和成熟细胞更新的重要机制,是指为维持内环境稳定,由基因控制的细胞自主的有序的死亡。65圆盘电泳:圆盘电泳即聚丙烯酰胺凝胶电泳。它是利用丙烯酰胺和双丙烯酰胺在催化剂的作用下聚合成大分子的凝胶物。它同时兼有分子筛和电泳效应。当样品通过凝胶进行电泳时,便可以根据其样品中各分子的电荷和分子量的不同而泳动出不同的区带。由于聚丙烯酰胺凝胶化学性质较琼脂稳定,很少带有侧基,在电泳过程中,吸附作用与电渗作用均小,所以该技术的分辨率均高于其它琼脂电泳技术。66遗传密码:包含在脱氧核糖核酸或核糖核酸核苷酸序列中的遗传信息。由3个连续的核苷酸组成的密码子所构成,编码20种氨基酸和多肽链起始及终止的一套64个三联体密码子。67多克隆抗体:由多种抗原决定簇刺激机体,相应地就产生各种各样的单克隆抗体,这些单克隆抗体混杂在一起就是多克隆抗体.68米氏方程:表示酶促动力学基本原理的数学表达式,此方程式表明了底物浓度与酶反应速度间的定量关系。米氏方程表示一个酶促反应的起始速度(v)与底物浓度(S)关系的速度方程,v=VmaxS/(Km+S)。69酮体:在肝脏中,脂肪酸氧化分解的中间产物乙酰乙酸、β-羟基丁酸及丙酮,三者统称为酮体。肝脏具有较强的合成酮体的酶系,但却缺乏利用酮体的酶系。酮体是脂肪分解的产物,而不是高血糖的产物。进食糖类物质也不会导致酮体增多。70辅酶和辅基:辅助因子是指酶的活性所需要的一种非蛋白质成分,包括辅酶、辅基和金属离子激活剂与酶紧密结合的辅因子称为辅基,与酶蛋白结合很松弛,用透析和其它方法很易将它们与酶分开的称为辅酶71移码突变:在正常地DNA分子中,碱基缺失或增加非3地倍数,造成这位置之后的一系列编码发生移位错误的改变,这种现象称移码突变。核酶是具有催化功能的RNA分子,是生物催化剂。核酶又称核酸类酶、酶RNA、核酶类酶RNA。它的发现打破了酶是蛋白质的传统观念。72氮平衡:机体从食物中摄入氮与排泄氮之间的关系。正常成人食入的蛋白质等含氮物质可以补偿含氮物质代谢产生的含氮排泄物。73遗传中心法则是指遗传信息从DNA传递给RNA,再从RNA传递给蛋白质,即完成遗传信息的转录和翻译的过程。也可以从DNA传递给DNA,即完成DNA的复制过程。这是所有有细胞结构的生物所遵循的法则。在某些病毒中的RNA自我复制(如烟草花叶病毒等)和在某些病毒中能以RNA为模板逆转录成DNA的过程(某些致癌病毒)是对中心法则的补充。反转录是以RNA为模板合成DNA的过程,也称逆转录。这是DNA生物合成的一种特殊方式。74氧化脱氨:α-氨基酸在酶的催化下脱氨生成相应的α-酮酸的过程。氧化脱氨实际上包括氧化和脱氨两个步骤。(脱氨和水解)75分子病由于遗传上的原因而造成的蛋白质分子结构或合成量的异常所引起的疾病。76亲和层析利用分子与其配体间特殊的、可逆性的亲和结合作用而进行分离的一种层析技术。可以选用生物化学、免疫化学或其他结构上吻合等亲和作用而设计的各种层析分离方法。如用寡脱氧胸苷酸-纤维素分离纯化信使核糖核酸;用DNA-纤维素分离依赖DNA的DNA聚合酶;用琼脂糖-抗体制剂分离抗原;用金属螯合柱分离带有成串组氨酸标签的重组蛋白质等。Southern杂交:DNA片段经电泳分离后,从凝胶中转移到硝酸纤维素滤膜或尼龙膜上,然后与探针杂交。被检对象为DNA,探针为DNA或RNA。77蛋氨酸循环在蛋氨酸腺苷转移酶的催化下,蛋氨酸与ATP作用,生成S腺苷蛋氨酸(SAM)。SAM中的甲基十分活泼,称活性甲基,SAM称活性蛋氨酸。78SAM在甲基转移酶的催化下,可将甲基转移给另一物质,使甲基化,SAM即变为S腺苷同型半胱氨酸。后者脱去腺苷、生成同型半胱氨酸。同型半胱氨酸由N5-甲基四氢叶酸供给甲基,生成蛋氨酸。此即蛋氨酸循环。是蛋氨酸提供甲基及其再生的过程。79熔解温度:双链DNA熔解彻底变成单链DNA的温度范围的中点温度。生化名词解释1、肽键(peptidebond)是由一个氨基酸的-羧基与另一个氨基酸的-氨基脱水缩合而形成的化学键。2、模体(motif):模体是蛋白质分子中具有特定空间构象和特定功能的结构成分。3、结构域(domain):三级结构中、分割成折叠较为紧密且稳定的区域,各行使其功能。结构域也可看作是球状蛋白质的独立折叠单位,有较为独立的三维空间结构。4、蛋白质的等电点(isoelectricpoint,pI):当蛋白质溶液处于某一pH时,蛋白质解离成正、负离子的趋势相等,即成为兼性离子,净电荷为零,此时溶液的pH称为蛋白质的等电点。5、蛋白质的变性(denaturation):在某些物理和化学因素作用下,其特定的空间构象被破坏,也即有序的空间结构变成无序的空间结构,从而导致其理化性质改变和生物活性的丧失。6、亚基(subunit):四级结构中每条具有完整三级结构的多肽链。7、谷胱甘肽(glutathione,GSH):是由谷氨酸、半胱氨酸和甘氨酸组成的三肽。分子中半胱氨酸的巯基是该化合物的主要功能基团。8、协同效应(cooperativity):一个亚基与其配体结合后,能影响此寡聚体中另一个亚基与配体的结合能力,称为协同效应。若是促进作用则称为正协同效应(positivecooperativit);若是抑制作用则称为负协同效应(negativecooperativity).9、分子病(moleculardisease):由蛋白质分子发生变异所导致的疾病,称为分子病。10、DNA变性(DNAdenaturation):某些理化因素(温度、pH、离子强度等)会导致DNA双链互补碱基之间的氢键发生断裂,使DNA双链解离为单链。这种现象称为DNA变性。11、磷酸二酯键(phosphodiesterbond):一个脱氧核苷酸3的羟基与另一个核苷酸5的α-磷酸基团缩合形成磷酸二酯键。12、核小体(nucleosome):染色质的基本组成单位是核小体,它是由DNA和H1、H2A、H2B、H3和H4等5种组蛋白共同构成的。13、解链温度/融解温度(meltingtemperature,Tm):在解链过程中,紫外吸光度的变化ΔA260达到最大变化值的一半时所对应的温度定义为DNA的解链温度或融解温度。14、退火(annealing):热变性的DNA经缓慢冷却后可以复性,这一过程称为退火。15、增色效应(hyperchromiceffect):在DNA解链过程中,由于有更多的共轭双键得以暴露,含有DNA的溶液在260nm处的吸光度随之增加,这种现象称为DNA的增色效应。16、必需基团(essentialgroup):酶分子中氨基酸残基侧链的化学基团中,一些与酶活性密切相关的基团。17、酶的活性中心(activecenter)/活性部位(activesite):是酶分子中能与底物特异结合并催化底物转化为产物的具有特定三维结构的区域。18、酶的特异性(specificity):一种酶仅作用于一种或一类化合物,或一定的化学键,催化一定的化学反应并生成一定的产物。酶的这种特性称为酶的特异性或专一性。19、竞争性抑制(competitiveinhibition):抑制剂和酶的底物在结构上相似,可与底物竞争结合酶的活性中心,从而阻碍酶与底物形成中间产物,这种抑制作用称为竞争性抑制作用。20、别构调节(allostericregulation):体内的一些代谢物可与酶分子活性中心外的某个部位非共价可逆结合,使酶构象改变,从而改变酶的活性,酶的这种调节方式称为酶的别构调节。21、酶的共价修饰(covalentmodification):在其他酶的催化作用下,某些酶蛋白肽链上的一些基团可与某种化学基团发生可逆的共价结合,从而改变酶的活性,此过程称为共价修饰。22、酶原(zymogen):有些酶在细胞内合成或初分泌时只是酶的无活性前体,此前体物质称为酶原。23、米氏常数(Michaelisconstant):米氏方程V=Vmax[S]/(Km+[S])中,Km为米氏常数。24、同工酶(isoenzyme或isozyme):是指催化相同化学反应,但酶蛋白的分子结构。理化性质乃至免疫学性质不同地一组酶。25、磷酸戊糖途径(pentosephosphatepathway):是指从糖酵解的中间产物6-磷酸-葡萄糖开始形成旁路,通过氧化、基团转移两个阶段生成果糖-6-磷酸和3-磷酸甘油醛,从而返回糖酵解的代谢途径,亦称为磷酸戊糖旁路(pentosephosphateshunt)。26、糖异生(gluconeogenesis):是指从非糖化合物转变为葡萄糖或糖原的过程。27、乳酸循环:(Coricycle):肌细胞通过糖无氧氧化生成乳酸,乳酸通过血液运输到肝,在肝内异生为葡萄糖。葡萄糖入血后再被肌摄取,由此构成循环,此循环称为乳酸循环,也称Cori循环。此过程能回收乳酸中的能量,又可避免因乳酸堆积而引起酸中毒。28、三羧酸循环(TricarboxylicacidCycle,TCAcycle):又称柠檬酸循环(citricacidcycle),是由线粒体内一系列酶促反应构成的循环反应系统。指乙酰CoA和草酰乙酸缩合生成含三个羧基的柠檬酸,反复的进行脱氢脱羧,又生成草酰乙酸,再重复循环反应的过程。因为该学说由Krebs正式提出,亦称为Krebs循环。29、糖酵解(glycolysis):一分子葡萄糖在胞液中可裂解为两分子丙酮酸,是葡萄糖无氧氧化和有氧氧化的共同起始途径,称为糖酵解。30、糖原(glycogen):是动物体内糖的储存形式之一,是机体能迅速动用的能量储备。31、糖的无氧氧化(anaerobicoxidation):在机体缺氧条件下,葡萄糖经一系列酶促反应生成丙酮酸进而还原生成乳酸的过程称糖的无氧氧化。32、糖的有氧氧化(aerobicoxidation):机体利用氧将葡萄糖彻底氧化成H2O和CO2的反应过程,称为糖的有氧氧化,是体内糖分解供能的主要方式。33、必需脂肪酸(essentialfattyacid):机体必需但自身又不能合成或合成量不足,必须从植物油中摄取的脂肪酸叫必需脂肪酸。包括亚油酸、亚麻酸和花生四烯酸。34、脂肪动员(fatmobilization):是指储存在脂肪细胞中的脂肪,在肪脂酶作用下逐步水解释放FFA及甘油供其他组织氧化利用的过程。35、激素敏感性甘油三酯脂肪酶(hormone-sensitivetriglyceridelipase,HSL)/激素敏感性脂肪酶(hormonesensitivelipase,HSL):脂肪细胞内的一种催化甘油三酯水解为甘油二酯及脂肪酸的酶,是脂肪动员的关键酶,其活性受多种激素调节。36、脂酸的β-氧化(β-oxidation):脂肪酸在体内氧化分解从羧基端β-碳原子开始,每次断裂2个碳原子。37、酮体(ketonebodies):脂肪酸在肝内β-氧化产生大量乙酰CoA,部分被转变为酮体。酮体包括乙酰乙酸(acetoacetate)、β-羟丁酸(β-hydroxybutyrate)、丙酮(acetone)。38、乳糜微粒(chylomicron,CM):由小肠粘膜细胞利用从消化道摄取的食物脂肪酸再合成甘油三酯后组装形成的一种脂蛋白,经淋巴系统吸收入血,功能是运输外源性甘油三酯和胆固醇。39、血脂(plasmalipids):血浆中脂类物质的总称,包括甘油三酯、胆固醇、胆固醇酯、磷脂和游离脂肪酸等。40、脂蛋白(lipoprotein):是脂质与载脂蛋白结合形成的复合体,是血浆脂质的运输和代谢形式。一般呈球形,表面为载脂蛋白、磷脂、胆固醇的亲水基团,内核为甘油三酯、胆固醇酯等疏水脂质。41、载脂蛋白(apolipoprotein,apo):血浆脂蛋白中的蛋白质部分,分为A、B、C、D、E等几大类,在血浆中期运载脂质的作用,还能识别脂蛋白受体、调节血浆脂蛋白代谢酶的活性。42、氧化呼吸链(respiratorychain):指线粒体内膜中按一定顺序排列的一系列具有电子传递功能的酶复合体(酶和辅酶),可通过一系列的氧化还原将代谢物脱下的电子(氢)最终传递给氧生成水。这一传递链称为氧化呼吸链(respiratorychain)又称电子传递链(electrontransferchain)。43、底物水平磷酸化(substratelevelphosphorylation):指ADP或其他核苷二磷酸的磷酸化作用与底物的脱氢作用直接相偶联的反应过程,是生物体内产能的方式之一。44、氧化磷酸化(oxidativephosphorylation):即由代谢物脱下的氢,经线粒体氧化呼吸链电子传递释放能量,偶联驱动ADP磷酸化生成ATP的过程。45、必需氨基酸(essentialaminoacid):指体内需要而又不能自身合成,必须由食物供给的氨基酸,共有8种:Val、Ile、Leu、Thr、Met、Lys、Phe、Trp。【我们高中老师教的口诀:甲借来一本亮色书】46、蛋白质的互补作用(complementaryaction):指营养价值较低的蛋白质混合食用,其必需氨基酸可以互相补充而提高营养价值。47、氮平衡(nitrogenbalance):指每日氮的摄入量(食物中的蛋白质)与排出量(粪便和尿液)之间的关系。48、蛋白质的腐败作用(putrefaction):未被消化的蛋白质及未被吸收的氨基酸,在大肠下部受大肠杆菌的分解,此分解作用称为腐败作用。腐败作用的产物大多有害,如胺、氨、苯酚、吲哚等;也可产生少量的脂肪酸及维生素等可被机体利用的物质。49、氨基酸代谢库(metabolicpool):食物蛋白质经消化吸收的氨基酸(外源性氨基酸)与体内组织蛋白质降解产生的氨基酸及体内合成的非必需氨基酸(内源性氨基酸)混在一起,分布于体内各处参与代谢,称为氨基酸代谢库。50、泛素(ubiquitin):一种高度保守的小分子蛋白质。在细胞内蛋白质的蛋白酶体系降解途径中,在特异泛素化酶催化下,几个泛素分子串联地共价结合至靶蛋白的赖氨酸残基。51、脱氨基作用(deamination):指氨基酸脱去α-氨基生成相应α-酮酸的过程。52、转氨基作用(transamination):在转氨酶的作用下,某一氨基酸去掉α-氨基生成相应的α-酮酸,而另一种α-酮酸得到此氨基生成相应的氨基酸的过程。53、联合脱氨基作用(transdeamination):在转氨酶和谷氨酸脱氢酶的联合作用下,使各种氨基酸脱下氨基的过程。54、从头合成途径(denovosynthesispathway):利用磷酸核糖、氨基酸、一碳单位和CO2等简单物质为原料,经过一系列酶促反应,合成核苷酸的途径。这是主要合成途径,主要在肝脏进行。55、补救合成途径(salvagesynthesispathway):利用游离的碱基或核苷,经过简单的反应过程,合成核苷酸的途径,这是次要合成途径,脑、骨髓等只能进行此途径。56、生物转化(biotransformation):一些非营养物质在体内的代谢转变过程称为生物转化。57、胆汁酸肠肝循环(enterohepaticcirculationofbileacid):胆汁酸随胆汁排入肠腔后,95%通过重吸收经门静脉又回到肝,在肝内转变为结合型胆汁酸,经胆道再次排入肠腔的过程。58、胆素原的肠肝循环(enterohepaticurobilinogencycle):肠道中的胆素原少量可被肠粘膜细胞重吸收,经门静脉入肝,其中大部分再随胆汁排入肠道,形成胆素原的肠肝循环。59、半保留复制(semi-discontinuousreplication):子代细胞的DNA,一股单链从亲代完整地接受过来,另一股单链则完全为新合成。两个子细胞的DNA都和亲代DNA碱基序列一致。这种复制方式称为半保留复制。60、前导链(leadingstrand):复制的方向与解链方向相同,复制是连续进行的,这条子链称为前导链。61、后随链(laggingstrand):复制的方向与解链方向相反,复制是不连续进行的,这条子链称为后随链。62、冈崎片段(okazakifragment):随从链中的不连续片段称为冈崎片段。63、复制的半不连续性(semi-discontinuousreplication):领头链连续复制而随从链不连续复制,就是复制的半不连续性。64、突变/DNA的损伤(DNAdamage):DNA一级结构的任何异常的改变称为突变,也称为DNA的损伤。65、修复(repairing):是对已发生分子改变的补偿措施,使其回复为原有的天然状态。修复的主要类型有光修复、切除修复、重组修复和SOS修复。66、转录(transcription):以一段DNA链为模板合成RNA的过程。67、模板链(templatestrand):转录时作为RNA合成模板的一股单链称为模板链。68、编码链(codingstrand):与模板链相对应的另一股单链称为编码链。69、不对称转录(asymmetrictranscription):①对某一基因,一股链可转录,另一股链不转录;②模板链并非永远在同一单链上。70、操纵子(operon):原核生物一个转录区段可视为一个转录单位,称为操纵子,包括若干个结构基因及其上游调控序列。71、启动子(promoter):模板DNA上被RNA聚合酶识别并结合的部位称为启动子,是调控转录的关键部位。72、反式作用因子(trans-actingfactors):能直接或间接辨认和结合另一基因的DNA序列,影响其表达的蛋白质,统称为反式作用因子,又称转录因子(trans-criptionalfactors,TF)。其中直接或间接结合RNA聚合酶的,称为基本转录因子。72、断裂基因(splitegene):真核生物结构基因,由若干个编码序列和非编码序列互相间隔开但又连续镶嵌而成,去除非编码区再连接后,可翻译出由连续氨基酸组成的完整蛋白质,这些基因称为断裂基因。73、外显子(exon):在断裂基因及其初级转录产物上出现,并表达为成熟RNA的核酸序列(初级转录产物上有,成熟转录产物上也有的序列)。74、内含子(intron):隔断基因的线性表达而在剪接过程中被除去的核酸序列(初级转录产物上有,成熟转录产物上没有的序列)。1.

遗传密码:mRNA分子上从5'→3'方向,由起始密码子AUG开始,每3个核苷酸组成的三联体,决定肽链上某一个氨基酸或蛋白质合成的起始、终止信号,称为三联体密码,也叫密码子。2.

别构酶:又称为变构酶,是一类重要的调节酶。其分子除了与底物结合、催化底物反应的活性中心外,还有与调节物结合、调节反应速度的别构中心。通过别构剂结合于别构中心影响酶分子本身构象变化来改变酶的活性。3.

酮体:在肝脏中,脂肪酸不完全氧化生成的中间产物乙酰乙酸、β-羟基丁酸及丙酮统称为酮体。在饥饿时酮体是包括脑在内的许多组织的燃料,酮体过多会导致中毒。4.

糖酵解:生物细胞在无氧条件下,将葡萄糖或糖原经过一系列反应转变为乳酸,并产生少量ATP的过程。5.

EMP途径:又称糖酵解途径。指葡萄糖在无氧条件下经过一定反应历程被分解为丙酮酸并产生少量ATP和NADH+H+的过程。是绝大多数生物所共有的一条主流代谢途径。6.

糖的有氧氧化:葡萄糖或糖原在有氧条件下,经历糖酵解途径、丙酮酸脱氢脱羧和TCA循环彻底氧化,生成C02和水,并产生大量能量的过程。7.

氧化磷酸化:生物体通过生物氧化产生的能量,除一部分用于维持体温外,大部分通过磷酸化作用转移至高能磷酸化合物ATP中,这种伴随放能的氧化作用而使ADP磷酸化生成ATP的过程称为氧化磷酸化。根据生物氧化的方式可将氧化磷酸化分为底物水平磷酸化和电子传递体系磷酸化。8.

三羧酸循环:又称柠檬酸循环、TCA循环,是糖有氧氧化的第三个阶段,由乙酰辅酶A和草酰乙酸缩合生成柠檬酸开始,经历四次氧化及其他中间过程,最终又生成一分子草酰乙酸,如此往复循环,每一循环消耗一个乙酰基,生成CO2和水及大量能量。9.

糖异生:由非糖物质转变为葡萄糖或糖原的过程。糖异生作用的途径基本上是糖无氧分解的逆过程---除了跨越三个能障(丙酮酸转变为磷酸烯醇式丙酮酸、1,6-磷酸果糖转变为6-磷酸果糖,6-磷酸果糖转变为葡萄糖)需用不同的酶及能量之外,其他反应过程完全是糖酵解途径逆过程。10.

乳酸循环:指糖无氧条件下在骨骼肌中被利用产生乳酸及乳酸在肝中再生为糖而又可以为肌肉所用的循环过程。剧烈运动后,骨骼肌中的糖经无氧分解产生大量的乳酸,乳酸可通过细胞膜弥散入血,通过血液循环运至肝脏,经糖异生作用再转变为葡萄糖,葡萄糖经血液循环又可被运送到肌肉组织利用。11.

血糖:指血液当中的葡萄糖,主要来源是膳食中消化吸收入血的葡萄糖及肝糖原分解产生的葡萄糖,另外还有糖异生作用由中间代谢物合成的葡萄糖。12.

退火:热变性的DNA分子溶液,在缓慢冷却的情况下,DNA单链又重新配对复性的情况称为退火。13.

引发体:DNA的生物合成起始时由DNA模板链、多种蛋白因子和酶(包括引发酶,解旋酶等)所形成的复合体,功能是合成引物和起始DNA的生物合成。14.

维生素:是维持机体正常生命活动必需的一类小分子有机物质。在体内的含量很少,不能作为能量物质和结构物质,主要功能是对物质代谢过程起调节作用,在机体的生长、代谢、发育过程中发挥着重要的作用。维生素在体内不能合成,或合成的量不能满足机体的需要,所以必需从食物中摄取。15.

分子杂交:不同来源的DNA分子放在一起加热变性,然后慢慢冷却,让其复性。若这些异源DNA之间有互补的序列或部分互补的序列,则复性时会形成杂交分子。这种在退火条件下,不同来源的DNA互补区形成DNA-DNA杂合双链、或DNA单链和RNA的互补区形成DNA-RN

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论