




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年八上数学期末模拟试卷考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题(每题4分,共48分)1.如图,已知点的坐标为,点的坐标为,点在直线上运动,当最小时,点的坐标为()A. B. C. D.2.一个正数的平方根为2x+1和x﹣7,则这个正数为()A.5 B.10 C.25 D.±253.分式和的最简公分母是()A. B. C. D.4.如图,将一等边三角形的三条边各8等分,按顺时针方向(图中箭头方向)标注各等分点的序号0、1、2、3、4、5、6、7、8,将不同边上的序号和为8的两点依次连接起来,这样就建立了“三角形”坐标系.在建立的“三角形”坐标系内,每一点的坐标用过这一点且平行(或重合)于原三角形三条边的直线与三边交点的序号来表示(水平方向开始,按顺时针方向),如点的坐标可表示为(1,2,5),点的坐标可表示为(4,1,3),按此方法,则点的坐标可表示为()A. B. C. D.5.平面直角坐标系内,点A(-2,-3)在()A.第一象限 B.第二象限 C.第三象限 D.第四象限6.若分式的值为0,则()A.x=-2 B.x=0 C.x=1 D.x=1或-27.点P(3,-1)关于x轴对称的点的坐标是()A.(-3,1) B.(-3,-1) C.(1,-3) D.(3,1)8.下列代数式中,属于分式的是()A.﹣3 B. C.﹣a﹣b D.﹣9.如图,∠A=20°,∠B=30°,∠C=50°,求∠ADB的度数()A.50° B.100° C.70° D.80°10.在平面直角坐标系中,下列各点在第二象限的是()A.(3,1)B.(3,-1)C.(-3,1)D.(-3,-1)11.一个三角形的两边长分别是和,则第三边的长可能是()A. B. C. D.12.与是同类二次根式的是()A. B. C. D.二、填空题(每题4分,共24分)13.若关于x的分式方程有增根,则m的值为_____.14.若关于的一元二次方程有实数根,则的取值范围是_______.15.已知,则分式__________.16.等腰三角形一腰上的高与另一腰的夹角为40°,则其顶角的度数为_________.17.在实数范围内,把多项式因式分解的结果是________.18.如图,直线a∥b,∠BAC的顶点A在直线a上,且∠BAC=98°,若∠1=35°,则∠2=_____度.三、解答题(共78分)19.(8分)如图,ABC中,AB=AC,AD⊥BC于点D,延长AB至点E,使∠AEC=∠DAB.判断CE与AD的数量关系,并证明你的结论.20.(8分)(背景知识)研究平面直角坐标系,我们可以发现一条重要的规律:若平面直角坐标系上有两个不同的点、,则线段AB的中点坐标可以表示为(简单应用)如图1,直线AB与y轴交于点,与x轴交于点,过原点O的直线L将分成面积相等的两部分,请求出直线L的解析式;(探究升级)小明发现“若四边形一条对角线平分四边形的面积,则这条对角线必经过另一条对角线的中点”如图2,在四边形ABCD中,对角线AC、BD相交于点O,试说明;(综合运用)如图3,在平面直角坐标系中,,,若OC恰好平分四边形OACB的面积,求点C的坐标.21.(8分)如图,在中,D是的中点,,垂足分别是.求证:AD平分.22.(10分)计算:(1)(1+3)(1-3)(1+2)(1-2);(2)(3+2)2(3-2)2;(3)(3+32-6)(3-32-6).23.(10分)如图,已知M是AB的中点,CM=DM,∠1=∠1.(1)求证:△AMC≌△BMD.(1)若∠1=50°,∠C=45°,求∠B的度数.24.(10分)已知三角形△ABC,AB=3,AC=8,BC长为奇数,求BC的长.25.(12分)如图,在7×7网格中,每个小正方形的边长都为1.(1)建立适当的平面直角坐标系后,若点A(1,3)、C(2,1),则点B的坐标为______;(2)△ABC的面积为______;(3)判断△ABC的形状,并说明理由.26.甲、乙两个工程队计划修建一条长15千米的乡村公路,已知甲工程队每天比乙工程队每天多修路0.5千米,乙工程队单独完成修路任务所需天数是甲工程队单独完成修路任务所需天数的1.5倍.(1)求甲、乙两个工程队每天各修路多少千米?(2)若甲工程队每天的修路费用为0.5万元,乙工程队每天的修路费用为0.4万元,要使两个工程队修路总费用不超过5.2万元,甲工程队至少修路多少天?
参考答案一、选择题(每题4分,共48分)1、A【分析】连接AB,与直线的交点就是点C,此时最小,先求出直线AB的解析式,然后求出点C的坐标即可【详解】解:根据题意,如图,连接AB,与直线的交点就是点C,则此时最小,设点A、B所在的直线为,则,解得:,∴,∴,解得:,∴点C的坐标为:;故选:A.【点睛】本题考查了一次函数的图形和性质,以及最短路径问题,解题的关键是正确确定点C的位置,求出直线AB的解析式,进而求出点C.2、C【解析】一个正数的平方根为2x+1和x−7,∴2x+1+x−7=0x=2,2x+1=5(2x+1)2=52=25,故选C.3、C【分析】当所有的分母都是单项式时,确定最简公分母的方法:(1)取各分母系数的最小公倍数作为最简公分母的系数;(2)凡单独出现的字母连同它的指数作为最简公分母的一个因式;(3)同底数幂取次数最高的,得到的因式的积就是最简公分母.再结合题意即可求解.【详解】∵和的最简公分母是∴选C故选:C【点睛】通常取各分母系数的最小公倍数与字母因式的最高次幂最为最简公分母,本题属于基础题.4、C【分析】分别找到点C与过这一点且平行(或重合)于原三角形三条边的直线与三边交点的序号,然后从水平方向开始,顺时针方向即可写出C的坐标.【详解】过点C且平行(或重合)于原三角形三条边的直线与三边交点的序号分别是2,4,2∵水平方向开始,按顺时针方向∴点C的坐标为故选:C.【点睛】本题主要考查在新坐标系下确定点的坐标,读懂题意是解题的关键.5、C【分析】根据各象限内点的坐标特征进一步解答即可.【详解】由题意得:点A的横坐标与纵坐标皆为负数,∴点A在第三象限,故选:C.【点睛】本题主要考查了直角坐标系中点的坐标特征,熟练掌握相关概念是解题关键.6、C【分析】要使分式的值等于0,则分子等于0,且分母不等于0.【详解】若分式的值为0,则x-1=0,且x+2≠0,所以,x=1,x≠-2,即:x=1.故选C【点睛】本题考核知识点:分式值为0的条件.解题关键点:熟记要使分式的值等于0,则分子等于0,且分母不等于0.7、D【分析】直接利用关于x轴对称点的性质,横坐标不变,纵坐标改变符号,进而得出答案.【详解】解:点P(3,-1)关于x轴对称的点的坐标是:(3,1).
故选:D.【点睛】此题主要考查了关于x轴对称点的性质,正确掌握横纵坐标的关系是解题关键.8、B【分析】根据分式的定义:形如,A、B是整式,B中含有字母且B不等于0的式子叫做分式,逐一判断即可.【详解】解:A.﹣3不是分式,故本选项不符合题意;B.是分式,故本选项符合题意;C.﹣a﹣b不是分式,故本选项不符合题意;D.﹣不是分式,故本选项不符合题意.故选B.【点睛】此题考查的是分式的判断,掌握分式的定义是解决此题的关键.9、B【分析】三角形一个外角等于与它不相邻的两个内角的和,根据外角的性质即可得到结论.【详解】解:∵∠AEB=∠A+∠C=20°+50°=70°,∴∠ADB=∠AEB+∠B=70°+30°=100°.故选B.【点睛】本题主要考查了三角形的外角的性质,熟练掌握三角形外角的性质是解题的关键.10、C【解析】由第二象限中坐标特点为,横坐标为负,纵坐标为正,由此即可判断.【详解】A.(3,1)位于第一象限;B.(3,-1)位于第四象限;C.(-3,1)位于第二象限;D.(-3,-1)位于第三象限;故选C.【点睛】此题主要考察直角坐标系的各象限坐标特点.11、C【分析】根据三角形任意两边之和大于第三边,任意两边之差小于第三边求出第三边的取值范围,即可求解..【详解】设第三边为x,由三角形三条边的关系得1-2<x<1+2,∴2<x<6,∴第三边的长可能是1.故选C.【点睛】本题考查了三角形三条边的关系,熟练掌握三角形三条边的关系是解答本题的关键.12、D【分析】根据同类二次根式是化为最简二次根式后,被开方数相同的二次根式称为同类二次根式,可得答案.【详解】解:A、=,故A错误;
B、与不是同类二次根式,故B错误;
C、,故C错误;
D、,故D正确;
故选:D.【点睛】本题考查同类二次根式的概念,同类二次根式是化为最简二次根式后,被开方数相同的二次根式称为同类二次根式.二、填空题(每题4分,共24分)13、1【解析】试题分析:增根是化为整式方程后产生的不适合分式方程的根,所以应先增根的可能值,让最简公分母x-1=0,得到x=1,然后代入化为整式方程的方程算出m的值.试题解析:方程两边都乘以(x-1),得x-2(x-1)=m∵原方程有增根∴最简公分母x-1=0解得:x=1,当x=1时,m=1故m的值是1.考点:分式方程的增根.14、且【分析】根据一元二次方程的定义和判别式的性质计算,即可得到答案.【详解】关于的一元二次方程有实数根∴∴,即且.【点睛】本题考查了一元二次方程的知识;解题的关键是熟练掌握一元二次方程的定义和判别式的性质,从而完成求解.15、【分析】首先把两边同时乘以,可得,进而可得,然后再利用代入法求值即可.【详解】解:∵,∴,∴,∴故答案为:【点睛】此题主要考查了分式化简求值,关键是掌握代入求值时,有直接代入法,整体代入法等常用方法.16、50°或130°【分析】分类讨论当三角形是等腰锐角三角形和等腰钝角三角形两种情况,画出图形并结合三角形的内角和定理及三角形外角的性质,即可求出顶角的大小.【详解】(1)当三角形是锐角三角形时,如下图.根据题意可知,∵三角形内角和是,∴在中,(2)当三角形是锐角三角形时,如下图.根据题意可知,同理,在中,∵是的外角,∴故答案为或【点睛】本题考察了等腰三角形性质和三角形外角的性质以及三角形内角和定理的运用,分类讨论该等腰三角形是等腰锐角三角形或等腰钝角三角形是本题的关键.17、【分析】首先提取公因式3,得到,再对多项式因式利用平方差公式进行分解,即可得到答案.【详解】==故答案是:【点睛】本题考查了对一个多项式在实数范围内进行因式分解.能够把提取公因式后的多项式因式写成平方差公式的形式是解此题的关键.18、1.【分析】由直线a∥b,利用“两直线平行,内错角相等”可得出∠3的度数,结合∠2+∠3+∠BAC=180°及∠BAC=98°,即可求出∠2的度数.【详解】解:如图,∵直线a∥b,∴∠3=∠1=35°,∵∠2+∠3+∠BAC=180°,∠BAC=98°,∴∠2=180°﹣∠3﹣∠BAC=180°﹣35°﹣98°=1°,故答案为:1.【点睛】本题考查了平行线的性质,牢记“两直线平行,内错角相等”是解题的关键.三、解答题(共78分)19、CE=2AD,证明详见解析【分析】延长AD至点N使DN=AD,AN交CE于点M,连接CN,根据等腰三角形的性质得到MA=ME,根据全等三角形的性质得到∠N=∠DAB.根据平行线的性质得到∠3=∠AEC.求得MC=MN,于是得到结论.【详解】解:CE=2AD;理由:延长AD至点N使DN=AD,AN交CE于点M,连接CN,∵∠DAB=∠AEC,∴MA=ME,∵AB=AC,AD⊥BC,∴∠CAD=∠DAB,BD=CD,∠1=∠2=90°.∴ABD≌NCD(AAS),∴∠N=∠DAB.∴CN∥AE.∴∠3=∠AEC.∴∠3=∠N.∴MC=MN,∴CE=MC+ME=MN+MA=AN=2AD.【点睛】本题考查了全等三角形的判定和性质,平行线的判定和性质,等腰三角形的判定和性质,正确的作出辅助线是解题的关键.20、[简单应用][探究升级][综合运用]【分析】简单应用:先判断出直线L过线段AB的中点,再求出线段AB的中点,最后用待定系数法即可得出结论;探究升级:先判断出,进而判断出≌,即可得出结论;综合运用:借助“探究升级”的结论判断出直线OC过线段AB的中点,进而求出直线OC的解析式,最后将点C坐标代入即可得出结论.【详解】解:简单应用:直线L将分成面积相等的两部分,直线L必过相等AB的中点,设线段AB的中点为E,,,,,直线L过原点,设直线L的解析式为,,,直线L的解析式为;探究升级:如图2,过点A作于F,过点C作于G,,,,,,在和中,,≌,;综合运用:如图3,由探究升级知,若四边形一条对角线平分四边形的面积,则这条对角线必经过另一条对角线的中点,恰好平分四边形OACB的面积,过四边形OACB的对角线OA的中点,连接AB,设线段AB的中点为H,,,,设直线OC的解析式为,,,,直线OC的解析式为,点在直线OC上,,,【点睛】此题是一次函数综合题,主要考查了待定系数法,三角形的中线的性质,全等三角形的判定和性质,构造出全等三角形是解本题的关键.21、见解析【分析】首先证明,然后有,再根据角平分线性质定理的逆定理即可证明.【详解】∵D是的中点,.,.在和中,,.,∴点D在的平分线上,∴AD平分.【点睛】本题主要考查角平分线性质定理的逆定理和全等三角形的判定及性质,掌握角平分线性质定理的逆定理和全等三角形的判定及性质是解题的关键.22、(1)2;(2)1;(3)-9-62.【解析】根据二次根式的运算规律及平方差公式或完全平方公式进行运算.【详解】(1)原式=(1−3)×(1−2)=2;(2)原式=3(3)原式=(==3-6=-9-6【点睛】考查二次根式的混合运算,熟练掌握完全平方公式以及平方差公式是解题的关键.23、(1)详见解析;(1)85°.【解析】(1)根据SAS证明即可;(1)由三角形内角和定理求得∠A,在根据全等三角形对应角相等,即可求得∠B的度数.【详解】(1)∵M是AB的中点,∴AM=BM,∵CM=DM,∠1=∠1∴△AMC≌△BMD(SAS)(1)∵△AMC≌△BMD,∴∠A=∠B,在△ACM中,∠A+∠1+∠C=180°,∴∠A=85°,∴∠B=85°.24、7或1.【分析】已知两边,则第三边的长度应是大于两边的差而小于两边的和,这样就可求出第三边长的范围;又知道第三边长为奇数,就可以知道第三边的长度.【详解】解:根据三角形的三边关系,得8-3<BC<3+8,即5<BC<2.又BC长是奇数,则BC=7或
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 办公设备维护与维修电子教案 模块三 商务办公 项目二 办公设备日常维护
- 2025年转租的房屋租赁合同范本
- 2025标准供货合同范本参考
- 小儿获得性免疫缺陷综合征肾病的临床护理
- 先天性肝囊肿的临床护理
- 2025房屋租赁合同书范本
- 2025新款房屋抵押贷款合同范本
- 2025年消防设施操作员之消防设备中级技能提升训练试卷A卷附答案
- 2025年初级银行从业资格之初级个人理财模考预测题库(夺冠系列)
- 2025年注册测绘师之测绘综合能力能力检测试卷B卷附答案
- Unit2-social-media-detox课件-高一英语外研版(2019)选择性必修二
- 2023版设备管理体系标准
- 空乘 空中老幼孕乘客服务现状、困难及对策分析
- 01S201室外消火栓安装图集
- 亲子沟通主题班会课件:有效的亲子沟通
- 双语 -【白皮书】新时代的中国绿色发展
- 康复医学科全新笔记汇总
- 肝癌肝移植的进展和展望
- 传统蝉花活体人工培养新技术
- 城市设计原理-西安建筑科技大学中国大学mooc课后章节答案期末考试题库2023年
- 学校食堂日管控周排查月调度样表
评论
0/150
提交评论