三年高考(2019-2021)数学(文)试题分项汇编-专题17 坐标系与参数方程(教师版)_第1页
三年高考(2019-2021)数学(文)试题分项汇编-专题17 坐标系与参数方程(教师版)_第2页
三年高考(2019-2021)数学(文)试题分项汇编-专题17 坐标系与参数方程(教师版)_第3页
三年高考(2019-2021)数学(文)试题分项汇编-专题17 坐标系与参数方程(教师版)_第4页
三年高考(2019-2021)数学(文)试题分项汇编-专题17 坐标系与参数方程(教师版)_第5页
已阅读5页,还剩4页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

金太阳好教育云平台第页(共=sectionpages9*19页)专题17坐标系与参数方程1.【2021年全国高考甲卷数学(文)】在直角坐标系中,以坐标原点为极点,x轴正半轴为极轴建立极坐标系,曲线C的极坐标方程为.(1)将C的极坐标方程化为直角坐标方程;(2)设点A的直角坐标为,M为C上的动点,点P满足,写出Р的轨迹的参数方程,并判断C与是否有公共点.【答案】(1);(2)P的轨迹的参数方程为(为参数),C与没有公共点.【分析】(1)将曲线C的极坐标方程化为,将代入可得;(2)设,设,根据向量关系即可求得P的轨迹的参数方程,求出两圆圆心距,和半径之差比较可得.【详解】(1)由曲线C的极坐标方程可得,将代入可得,即,即曲线C的直角坐标方程为;(2)设,设,,则,即,故P的轨迹的参数方程为(为参数)曲线C的圆心为,半径为,曲线的圆心为,半径为2,则圆心距为,,两圆内含,故曲线C与没有公共点.【点睛】关键点睛:本题考查参数方程的求解,解题的关键是设出的参数坐标,利用向量关系求解.2.【2021年全国高考乙卷数学(文)】在直角坐标系中,的圆心为,半径为1.(1)写出的一个参数方程;(2)过点作的两条切线.以坐标原点为极点,x轴正半轴为极轴建立极坐标系,求这两条切线的极坐标方程.【答案】(1),(为参数);(2)或.【分析】(1)直接利用圆心及半径可得的圆的参数方程;(2)先求得过(4,1)的圆的切线方程,再利用极坐标与直角坐标互化公式化简即可.【详解】(1)由题意,的普通方程为,所以的参数方程为,(为参数)(2)由题意,切线的斜率一定存在,设切线方程为,即,由圆心到直线的距离等于1可得,解得,所以切线方程为或,将,代入化简得或【点晴】本题主要考查直角坐标方程与极坐标方程的互化,涉及到直线与圆的位置关系,考查学生的数学运算能力,是一道基础题.3.【2020年高考全国Ⅰ卷文数】在直角坐标系中,曲线的参数方程为为参数.以坐标原点为极点,轴正半轴为极轴建立极坐标系,曲线的极坐标方程为.(1)当时,是什么曲线?(2)当时,求与的公共点的直角坐标.【解析】当k=1时,消去参数t得,故曲线是圆心为坐标原点,半径为1的圆.(2)当k=4时,消去参数t得的直角坐标方程为.的直角坐标方程为.由解得.故与的公共点的直角坐标为.【点睛】本题考查参数方程与普通方程互化,极坐标方程与直角坐标方程互化,合理消元是解题的关系,要注意曲线坐标的范围,考查计算求解能力,属于中档题.4.【2020年高考全国Ⅱ卷文数】已知曲线C1,C2的参数方程分别为C1:(θ为参数),C2:(t为参数).(1)将C1,C2的参数方程化为普通方程;(2)以坐标原点为极点,x轴正半轴为极轴建立极坐标系.设C1,C2的交点为P,求圆心在极轴上,且经过极点和P的圆的极坐标方程.【解析】(1)的普通方程为.由的参数方程得,,所以.故的普通方程为.(2)由得所以的直角坐标为.设所求圆的圆心的直角坐标为,由题意得,解得.因此,所求圆的极坐标方程为.【点睛】本题考查极坐标与参数方程的综合应用问题,涉及到参数方程化普通方程、直角坐标方程化极坐标方程等知识,属于常考题型.5.【2020年高考全国Ⅲ卷文数】在直角坐标系xOy中,曲线C的参数方程为(t为参数且t≠1),C与坐标轴交于A,B两点.(1)求;(2)以坐标原点为极点,x轴正半轴为极轴建立极坐标系,求直线AB的极坐标方程.【解析】(1)因为t≠1,由得,所以C与y轴的交点为(0,12);由得t=2,所以C与x轴的交点为.故.(2)由(1)可知,直线AB的直角坐标方程为,将代入,得直线AB的极坐标方程.【点睛】本题主要考查了利用参数方程求点的坐标以及直角坐标方程化极坐标方程,属于中档题.6.【2020年高考江苏】[选修4-4:坐标系与参数方程]在极坐标系中,已知点在直线上,点在圆上(其中,).(1)求,的值;(2)求出直线与圆的公共点的极坐标.【解析】(1)由,得;,又(0,0)(即(0,))也在圆C上,因此或0.(2)由得,所以.因为,,所以,.所以公共点的极坐标为.7.【2019年高考全国Ⅰ卷文数】在直角坐标系xOy中,曲线C的参数方程为(t为参数).以坐标原点O为极点,x轴的正半轴为极轴建立极坐标系,直线l的极坐标方程为.(1)求C和l的直角坐标方程;(2)求C上的点到l距离的最小值.【答案】(1);的直角坐标方程为;(2).【解析】(1)因为,且,所以C的直角坐标方程为.的直角坐标方程为.(2)由(1)可设C的参数方程为(为参数,).C上的点到的距离为.当时,取得最小值7,故C上的点到距离的最小值为.【名师点睛】本题考查参数方程、极坐标方程与直角坐标方程的互化、求解椭圆上的点到直线距离的最值问题.求解本题中的最值问题通常采用参数方程来表示椭圆上的点,将问题转化为三角函数的最值求解问题.8.【2019年高考全国Ⅱ卷文数】在极坐标系中,O为极点,点在曲线上,直线l过点且与垂直,垂足为P.(1)当时,求及l的极坐标方程;(2)当M在C上运动且P在线段OM上时,求P点轨迹的极坐标方程.【答案】(1),l的极坐标方程为;(2).【解析】(1)因为在C上,当时,.由已知得.设为l上除P的任意一点.在中,,经检验,点在曲线上.所以,l的极坐标方程为.(2)设,在中,即.因为P在线段OM上,且,故的取值范围是.所以,P点轨迹的极坐标方程为.【名师点睛】本题主要考查极坐标方程与直角坐标方程的互化,熟记公式即可,属于常考题型.9.【2019年高考全国Ⅲ卷文数】如图,在极坐标系Ox中,,,,,弧,,所在圆的圆心分别是,,,曲线是弧,曲线是弧,曲线是弧.(1)分别写出,,的极坐标方程;(2)曲线由,,构成,若点在M上,且,求P的极坐标.【答案】(1)的极坐标方程为,的极坐标方程为,的极坐标方程为.(2)或或或.【解析】(1)由题设可得,弧所在圆的极坐标方程分别为,,.所以的极坐标方程为,的极坐标方程为,的极坐标方程为.(2)设,由题设及(1)知若,则,解得;若,则,解得或;若,则,解得.综上,P的极坐标为或或或.【名师点睛】此题考查了极坐标中过极点的圆的方程,思考量不高,运算量不大,属于中档题.10.【2019年高考江苏卷数学】在极坐标系中,已知两点,直线l的方程为.(1)求A,B两点间的距离;(2)

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论