版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年八上数学期末模拟试卷注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每题4分,共48分)1.不等式组的解集在数轴上表示为A. B. C. D.2.已知关于x的多项式的最大值为5,则m的值可能为()A.1 B.2 C.4 D.53.如图,已知数轴上点表示的数为,点表示的数为1,过点作直线垂直于,在上取点,使,以点为圆心,以为半径作弧,弧与数轴的交点所表示的数为()A. B. C. D.4.下列图形是轴对称图形的有()A.2个 B.3个 C.4个 D.5个5.k、m、n为三整数,若,,,则下列有关于k、m、n的大小关系正确的是()A.k<m=n B.m=n<k C.m<n<k D.m<k<n6.下列选项中,可以用来证明命题“若,则”是假命题的反例的是()A. B. C. D.7.如果多项式分解因式的结果是,那么的值分别是()A. B. C. D.8.如图反映的过程是:张强从家跑步去体育场,在那里锻炼了一阵后,又去早餐店吃早餐,然后散步走回家.其中x表示时间,y表示张强离家的距离,根据图象提供的信息,以下四个说法错误的是()A.体育场离张强家2.5千米 B.张强在体育场锻炼了15分钟C.体育场离早餐店4千米 D.张强从早餐店回家的平均速度是3千米/小时9.一个多边形的内角和是外角和的2倍,则它是()A.六边形 B.七边形 C.八边形 D.九边形10.下列各数中是无理数的是()A. B. C. D.11.下表记录了甲、乙、丙、丁四名同学最近几次数学考试成绩的平均数与方差:甲乙丙丁平均数(分)92959592方差3.63.67.48.1要选择一名成绩好且发挥稳定的同学参加数学比赛,应该选择()A.甲 B.乙 C.丙 D.丁12.下列选项中的整数,与最接近的是()A.2 B.3 C.4 D.5二、填空题(每题4分,共24分)13.若,,,则,,的大小关系用"连接为________.14.如图,在Rt△ABC中,∠ACB=90°,∠B=30°,CD是斜边AB上的高,AD=3,则线段BD的长为___.15.如图,在平面直角坐标系中,点A的坐标为(0,3),△OAB沿x轴向右平移后得到△O′A′B′,点A的对应点A′在直线y=x上,则点B与其对应点B′间的距离为_____.16.已知一个正多边形的内角和为1080°,则它的一个外角的度数为_______度.17.函数的自变量的取值范围是.18.如图,上海实行垃圾分类政策后,各街道、各小区都在积极改造垃圾房,在工地一边的靠墙处,用12米长的栏围一个占面积为20平方米的长方形临时垃圾堆放点,栅栏只围三边,并且开一个2米的小门,方便垃圾桶的搬运.设垂直于墙的一边长为米.根据题意,建立关于的方程是____.三、解答题(共78分)19.(8分)如图,在等边中,边长为.点从点出发,沿方向运动,速度为;同时点从点出发,沿方向运动,速度为,当两个点有一个点到达终点时,另一个点随之停止运动.设运动时间为,解答下列问题:(1)当时,_______(用含的代数式表示);(2)当时,求的值,并直接写出此时为什么特殊的三角形?(3)当,且时,求的值.20.(8分)已知:如图,,那么成立吗?为什么?下面是小丽同学进行的推理,请你将小丽同学的推理过程补充完整.解:成立,理由如下:(已知)①(同旁内角互补,两条直线平行)(②)又(已知),(等量代换)(③)(④).21.(8分)如图,在平面直角坐标系中,直线y=﹣x+m过点A(5,—2)且分别与x轴、y轴交于点B、C,过点A画AD//x轴,交y轴于点D.(1)求点B、C的坐标;(2)在线段AD上存在点P,使BP+CP最小,求点P的坐标.22.(10分)在同一条道路上,甲车从地到地,乙车从地到地,乙先出发,图中的折线段表示甲、乙两车之间的距离(千米)与行驶时间(小时)的函数关系的图象,根据图象解决以下问题:(1)乙先出发的时间为小时,乙车的速度为千米/时;(2)求线段的函数关系式,并写出自变量的取值范围;(3)甲、乙两车谁先到终点,先到多少时间?23.(10分)如图,点D是△ABC内部的一点,BD=CD,过点D作DE⊥AB,DF⊥AC,垂足分别为E、F,且BE=CF.求证:AB=AC.24.(10分)某农场去年生产大豆和小麦共吨.采用新技术后,今年总产量为吨,与去年相比较,大豆超产,小麦超产.求该农场今年实际生产大豆和小麦各多少吨?25.(12分)阅读下列计算过程,回答问题:解方程组解:①,得,③②③,得,.把代入①,得,,.∴该方程组的解是以上过程有两处关键性错误,第一次出错在第_______步(填序号),第二次出错在第________步(填序号),以上解法采用了__________消元法.26.如图,将长方形ABCD沿EF折叠,使点D与点B重合.(1)若∠AEB=40°,求∠BFE的度数;(2)若AB=6,AD=18,求CF的长.
参考答案一、选择题(每题4分,共48分)1、C【详解】不等式组的解集为:1≤x<3,表示在数轴上:,故选C.【点睛】本题考查了不等式组的解集,不等式组的解集在数轴上表示的方法:把每个不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),数轴上的点把数轴分成若干段,如果数轴的某一段上面表示解集的线的条数与不等式的个数一样,那么这段就是不等式组的解集.有几个就要几个.在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.2、B【分析】利用配方法将进行配方,即可得出答案.【详解】解:故解得:故选B.【点睛】本题考查了配方法的运用,掌握配方法是解题的关键.3、B【分析】由数轴上点表示的数为,点表示的数为1,得PA=2,根据勾股定理得,进而即可得到答案.【详解】∵数轴上点表示的数为,点表示的数为1,∴PA=2,又∵l⊥PA,,∴,∵PB=PC=,∴数轴上点所表示的数为:.故选B.【点睛】本题主要考查数轴上点表示的数与勾股定理,掌握数轴上两点之间的距离求法,是解题的关键.4、C【解析】试题分析:根据轴对称图形的概念:如果一个图形沿一条直线折叠后,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形.据此对图中的图形进行判断.解:图(1)有一条对称轴,是轴对称图形,符合题意;图(2)不是轴对称图形,因为找不到任何这样的一条直线,使它沿这条直线折叠后,直线两旁的部分能够重合,即不满足轴对称图形的定义.不符合题意;图(3)有二条对称轴,是轴对称图形,符合题意;图(3)有五条对称轴,是轴对称图形,符合题意;图(3)有一条对称轴,是轴对称图形,符合题意.故轴对称图形有4个.故选C.考点:轴对称图形.5、A【分析】先化简二次根式,再分别求出k、m、n的值,由此即可得出答案.【详解】由得:由得:由得:则故选:A.【点睛】本题考查了二次根式的化简,掌握化简方法是解题关键.6、D【分析】根据题意,将选项中a的值代入命题中使得命题不成立即可判断原命题是假命题.【详解】选项中A,B,C都满足原命题,D选项与原命题的条件相符但与结论相悖,则是原命题作为假命题的反例,故选:D.【点睛】本题主要考查了命题的相关知识,熟练掌握真假命题的判断是解决本题的关键.7、D【分析】根据十字相乘法的分解方法和特点可知:,.【详解】∵多项式分解因式的结果是,
∴,,
∴,.
故选:D.【点睛】本题主要考查十字相乘法分解因式,型的式子的因式分解.这类二次三项式的特点是:二次项的系数是1;常数项是两个数的积;可以直接将某些二次项的系数是1的二次三项式因式分解:.8、C【分析】根据函数图象的横坐标,可得时间,根据函数图象的纵坐标,可得距离.【详解】A、由纵坐标看出,体育场离张强家2.5千米,故A正确;B、由横坐标看出,30-15=15分钟,张强在体育场锻炼了15分钟,故B正确;C、由纵坐标看出,2.5-1.5=1千米,体育场离早餐店1千米,故C错误;D、由纵坐标看出早餐店离家1.5千米,由横坐标看出从早餐店回家用了95-65=30分钟=0.5小时,1.5÷=3千米/小时,故D正确.故选C.【点睛】本题考查了函数图象,观察函数图象获得有效信息是解题关键.9、A【分析】先根据多边形的内角和定理及外角和定理,列出方程,再解方程,即可得答案.【详解】解:设多边形是边形.由题意得:解得∴这个多边形是六边形.故选:A.【点睛】本题考查内角和定理及外角和定理的计算,方程思想是解题关键.10、B【分析】分别根据无理数的定义即可判定选择项.【详解】A、是有限小数,是有理数,不是无理数;B、是无理数;C、是分数,是有理数,不是无理数;D、是整数,是有理数,不是无理数;故选:B.【点睛】本题主要考查了无理数的定义,其中初中范围内学习的无理数有:,等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.11、B【分析】方差是反映一组数据的波动大小的一个量.方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好,选出方差最小,而且平均数较大的同学参加数学比赛.【详解】解:∵3.6<7.4<8.1,
∴甲和乙的最近几次数学考试成绩的方差最小,发挥稳定,
∵95>92,
∴乙同学最近几次数学考试成绩的平均数高,
∴要选择一名成绩好且发挥稳定的同学参加数学比赛,应该选择乙.
故选B.【点睛】此题主要考查了方差的含义和求法,要熟练掌握,解答此题的关键是要明确:方差是反映一组数据的波动大小的一个量.方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好.12、C【分析】根据,及3.52即可解答.【详解】解:∵9<13<16,∴,∵,∴,则最接近的是4,故选:C.【点睛】此题考查了估算无理数的大小,熟练掌握估算无理数的方法是解本题的关键.二、填空题(每题4分,共24分)13、【分析】根据零指数幂得出a的值,根据平方差公式运算得出b的值,根据积的乘方的逆应用得出c的值,再比较大小即可.【详解】解:∵,,∴.故答案为:.【点睛】本题考查了零指数幂,平方差公式的简便运算,积的乘方的逆应用,解题的关键是根据上述运算法则计算出a,b,c的值.14、9【分析】利用三角形的内角和求出∠A,余角的定义求出∠ACD,然后利用含30度角的直角三角形性质求出AC=2AD,AB=2AC即可..【详解】解:∵CD⊥AB,∠ACB=90°,∴∠ADC=∠ACB=90°又∵在三角形ABC中,∠B=30°∴∠A=90°-∠B=60°,AB=2AC又∵∠ADC=90°∴∠ACD=90°-∠A=30°∴AD=AC,即AC=6∴AB=2AC=12∴BD=AB-AD=12-3=9【点睛】本题主要考查了含30度角的直角三角形性质以及三角形内角和定理,解题的关键在于灵活应用含30度角的直角三角形性质.15、1.【详解】解:如图,连接AA′、BB′.∵点A的坐标为(0,2),△OAB沿x轴向右平移后得到△O′A′B′,∴点A′的纵坐标是2.又∵点A的对应点在直线y=x上一点,∴2=x,解得x=1,∴点A′的坐标是(1,2),∴AA′=1,∴根据平移的性质知BB′=AA′=1.故答案为1.【点睛】本题考查了一次函数图象上点的坐标特征、坐标与图形变化﹣平移.根据平移的性质得到BB′=AA′是解题的关键.16、45【分析】利用n边形内角和公式求出n的值,再结合多边形的外角和度数为即可求出一个外角的度数.【详解】解:设这个正多边形为正n边形,根据题意可得解得所以该正多边形的一个外角的度数为45度.故答案为:45.【点睛】本题考查了多边形内角和与外角和,灵活利用多边形的内角和与外角和公式是解题的关键.17、x≠1【解析】该题考查分式方程的有关概念根据分式的分母不为0可得X-1≠0,即x≠1那么函数y=的自变量的取值范围是x≠118、【分析】设垃圾房的宽为x米,由栅栏的长度结合图形,可求出垃圾房的长为(14-2x)米,再根据矩形的面积公式即可列出关于x的一元二次方程,此题得解.【详解】设垃圾房的宽为x米,则垃圾房的长为(14-2x)米,根据题意得:x(14-2x)=1.故答案为:x(14-2x)=1.【点睛】本题考查了由实际问题抽象出一元二次方程,找准等量关系,正确列出一元二次方程是解题的关键.三、解答题(共78分)19、(1);(2),等边三角形;(1)2或1.【分析】(1)当,可知点P在BA上,所以BP长等于点P运动的总路程减去BC长;(2)若,可证得,用含t的式子表示出AP、AQ,可求出t值,结合平行与等边的性质可知为等边三角形.(1)分类讨论,当时,点可能在边上或在边上,用含t的式子表示出BP的长,可得t值.【详解】(1)设点P运动的路程为s,当时,,即,因为,所以点P在BA上,所以;(2)如图为等边三角形,是等边三角形.∴.解得.所以等边三角形.(1)当点在边上时,.∴.当点在边上时,.∴.【点睛】本题主要考查了等边三角形中的动点问题,涉及了等边三角形的性质与判定,灵活的用代数式表示线段长是解题的关键.20、AB∥CD;两直线平行,同位角相等;内错角相等,两直线平行;两直线平行,内错角相等.【分析】根据平行线的判定推出AB∥CD,根据平行线的性质和已知得出∠DCE=∠D,推出AD∥BE,根据平行线的性质推出即可.【详解】,∴AB∥CD(同旁内角互补,两直线平行),∴∠B=∠DCE(两直线平行,同位角相等),∵∠B=∠D,∴∠DCE=∠D,∴AD∥BE(内错角相等,两直线平行),∴∠E=∠DFE(两直线平行,内错角相等),故答案为:AB∥CD;两直线平行,同位角相等;内错角相等,两直线平行;两直线平行,内错角相等.【点睛】本题考查了对平行线的性质和判定的应用,主要考查学生的推理能力.21、(1),;(2).【分析】(1)代入点A(5,-2)求出m的值,分别代入y=0和x=0,求出点B、C的坐标(2)过C作直线AD对称点Q,求出直线BQ的方程式,代入y=-2,即可求出点P的坐标【详解】(1)∵y=-x+m过点A(5,-2),∴-2=-5+m,∴m=3∴y=-x+3令y=0,∴x=3,∴B(3,0)令x=0,∴y=3,∴C(0,3)(2)过C作直线AD对称点Q,可得Q(0,-7),连结BQ,交AD与点P,可得直线BQ:令y’=-2∴∴【点睛】本题考查了二元一次方程的求解以及动点问题,掌握作对称点的方法来使BP+CP最小是解题的关键22、(1)0.5;60;(2);(3)乙;【分析】(1)根据第一段图象可以看出乙先出发0.5小时,然后利用路程÷时间=速度即可求出乙的速度;(2)先求出甲车的速度,进而求出甲乙两车的相遇时间,从而得到C的坐标,然后将B,C代入用待定系数法即可求值线段BC的解析式;(3)计算发现乙到达终点的时间为,而从图象中可知甲到达终点的时间为1.75小时,据此问题可解.【详解】(1)根据图象可知图象在点B处出现转折,所以前一段应该是乙提前出发的时间∴乙先出发0.5小时,在0.5小时内行驶了100-70=30千米∴乙的速度为(2)乙从地到地所需的时间为∴甲从地到地所需的时间为∴甲的速度为∴从甲车出发到甲乙两车相遇所需的时间为∵乙先出发0.5小时,∴甲乙两车相遇是在乙车出发后1小时∴设直线BC的解析式为将代入解析式中得解得∴直线BC的解析式为(3)乙从地到地所需的时间为,而甲是在乙出发1.75小时后到达终点的,所以乙先到终点所以乙比甲早到【点睛】本题主要考查一次函数的应用,掌握待定系数法和理解各个转折点的含义是解题的关键.23、证明见解析.【解析】欲证明AB=AC,只要证明∠ABC=∠ACB即可,根据“HL”证明Rt△BDE≌Rt△CDF,由全等三角形的性质可证∠EBD=∠FCD,再由等腰三角形的性质∠DBC=∠DCB,从而可证∠ABC=∠ACB.【详解】∵DE⊥AB,DF⊥AC,∴∠BED=∠CFD=90°.在Rt△BDE和Rt△CDF中,∴Rt△BDE≌Rt△CDF(HL),∴∠EBD=∠FCD,∵BD=CD,∴∠DBC=∠DCB,∴∠DBC+∠EBD=∠DCB+∠FCD,即∠ABC=∠ACB,∴AB=AC.【点睛】本题考查全等三角形的判定和性质,等腰三角形的判定和性质等知识,解题的关键是正确寻找全等三角形解决问题,属于中考常考题型.24、大豆,小麦今年的产量分别为110吨和240吨【分析】设农场
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 《家具与室内透视》课件
- 百万医疗险销售
- 鸿门宴课件统编版
- 手指骨折的手术护理查房
- 二零二四年度股权激励合同标的及激励方案
- 锅炉执行标准课件
- 《酒店客人的类型》课件
- 二零二四年度化工企业并购合同3篇
- 2024年度知识产权许可合同模板:新型专利技术使用授权2篇
- 二零二四年度智能家居产品定制与安装合同3篇
- 公共场所反恐演练预案
- 行政职业能力测试真题2008年
- 骨科特殊检查课件
- 2024秋期河南开放大学本科《消费者权益保护法》一平台无纸化考试(形考任务1至3+我要考试)试题及答案
- 三级综合医院评审标准(2024年版)
- 2024年国家公务员考试《行测》真题(行政执法)
- 英语-浙江省精诚联盟2024学年高一第一学期10月联考试题和答案
- 2024年时事政治题库及参考答案(100题)
- 中药涂擦课件教学课件
- 昆仑银行股份有限公司招聘笔试题库2024
- 人教版(2024)七年级上册生物第二单元第三章《微生物》教学设计(共4节)
评论
0/150
提交评论