版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年九上数学期末模拟试卷考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每小题3分,共30分)1.已知点、、在函数上,则、、的大小关系是().(用“>”连结起来)A. B. C. D.2.如图,平行于BC的直线DE把△ABC分成的两部分面积相等,则为()A. B. C. D.3.已知反比例函数的图象在二、四象限,则的取值范围是()A. B. C. D.4.已知两个相似三角形,其中一组对应边上的高分别是和,那么这两个三角形的相似比为()A. B. C. D.5.如图,以点O为位似中心,把△ABC放大为原图形的2倍得到△A'B'C',以下说法中错误的是(
)A.△ABC∽△A'B'C' B.点C、点O、点C'三点在同一直线上 C.AO:AA'=1∶2 D.AB∥A'B'6.若(、均不为0),则下列等式成立的是()A. B. C. D.7.关于抛物线y=-3(x+1)2﹣2,下列说法正确的是()A.开口方向向上 B.顶点坐标是(1,2)C.当x<-1时,y随x的增大而增大 D.对称轴是直线x=18.已知y=(m+2)x|m|+2是关于x的二次函数,那么m的值为()A.﹣2 B.2 C.±2 D.09.在直角坐标系中,点关于坐标原点的对称点的坐标为()A. B. C. D.10.如图,在中,所对的圆周角,若为上一点,,则的度数为()A.30° B.45° C.55° D.60°二、填空题(每小题3分,共24分)11.如图,已知射线,点从B点出发,以每秒1个单位长度沿射线向右运动;同时射线绕点顺时针旋转一周,当射线停止运动时,点随之停止运动.以为圆心,1个单位长度为半径画圆,若运动两秒后,射线与恰好有且只有一个公共点,则射线旋转的速度为每秒______度.12.如图,在△ABC中,∠C=90°,BC=6,AC=9,将△ABC平移使其顶点C位于△ABC的重心G处,则平移后所得三角形与原△ABC的重叠部分面积是_____.13.如图,矩形中,边长,两条对角线相交所成的锐角为,是边的中点,是对角线上的一个动点,则的最小值是_______.14.已知,P为等边三角形ABC内一点,PA=3,PB=4,PC=5,则S△ABC=_____.15.(2016广东省茂名市)如图,在平面直角坐标系中,将△ABO绕点B顺时针旋转到△A1BO1的位置,使点A的对应点A1落在直线上,再将△A1BO1绕点A1顺时针旋转到△A1B1O2的位置,使点O1的对应点O2落在直线上,依次进行下去…,若点A的坐标是(0,1),点B的坐标是(,1),则点A8的横坐标是__________.16.已知1是一元二次方程的一个根,则p=_______.17.记函数的图像为图形,函数的图像为图形,若N与没有公共点,则的取值范围是___________.18.某校开展“节约每滴水”活动,为了了解开展活动一个月以来节约用水情况,从九年级的400名同学中选取20名同学统计了各自家庭一个月节约用水情况,如下表:节水量()0.20.250.30.4家庭数(个)4637请你估计这400名同学的家庭一个月节约用水的总量大约是_________.三、解答题(共66分)19.(10分)年月日商用套餐正式上线.某移动营业厅为了吸引用户,设计了,两个可以自由转动的转盘(如图),转盘被等分为个扇形,分别为红色和黄色;转盘被等分为个扇形,分别为黄色、红色、蓝色,指针固定不动.营业厅规定,每位新用户可分别转动两个转盘各一次,转盘停止后,若指针所指区域颜色相同,则该用户可免费领取通用流量(若指针停在分割线上,则视其指向分割线右侧的扇形).小王办理业务获得一次转转盘的机会,求他能免费领取通用流量的概率.AB20.(6分)解方程:x2﹣6x﹣40=021.(6分)已知一个圆锥的轴截面△ABC是等边三角形,它的表面积为75πcm²,求这个圆维的底面的半径和母线长.22.(8分)(1)某学校“智慧方园”数学社团遇到这样一个题目:如图(1),在中,点在线段上,,,,,求的长.经过社团成员讨论发现:过点作,交的延长线于点,通过构造就可以解决问题,如图(2).请回答:______.(2)求的长.(3)请参考以上解决思路,解决问题:如图(3),在四边形中,对角线与相交于点,,,,,求的长.23.(8分)已知关于x的一元二次方程x2+2x+m=1.(1)当m=3时,判断方程的根的情况;(2)当m=﹣3时,求方程的根.24.(8分)“扬州漆器”名扬天下,某网店专门销售某种品牌的漆器笔筒,成本为30元/件,每天销售量(件)与销售单价(元)之间存在一次函数关系,如图所示.(1)求与之间的函数关系式;(2)如果规定每天漆器笔筒的销售量不低于240件,当销售单价为多少元时,每天获取的利润最大,最大利润是多少?(3)该网店店主热心公益事业,决定从每天的销售利润中捐出150元给希望工程,为了保证捐款后每天剩余利润不低于3600元,试确定该漆器笔筒销售单价的范围.25.(10分)一段路的“拥堵延时指数”计算公式为:拥堵延时指数=,指数越大,道路越堵。高德大数据显示第二季度重庆拥堵延时指数首次排全国榜首。为此,交管部门在A、B两拥堵路段进行调研:A路段平峰时汽车通行平均时速为45千米/时,B路段平峰时汽车通行平均时速为50千米/时,平峰时A路段通行时间是B路段通行时间的倍,且A路段比B路段长1千米.(1)分别求平峰时A、B两路段的通行时间;(2)第二季度大数据显示:在高峰时,A路段的拥堵延时指数为2,每分钟有150辆汽车进入该路段;B路段的拥堵延时指数为1.8,每分钟有125辆汽车进入该路段。第三季度,交管部门采用了智能红绿灯和潮汐车道的方式整治,拥堵状况有明显改善,在高峰时,A路段拥堵延时指数下降了a%,每分钟进入该路段的车辆增加了;B路段拥堵延时指数下降,每分钟进入该路段的车辆增加了a辆。这样,整治后每分钟分别进入两路段的车辆通过这两路段所用时间总和,比整治前每分钟分别进入这两段路的车辆通过这两路段所用时间总和多小时,求a的值.26.(10分)已知关于x的一元二次方程有两个相等的实数根,求m的值.
参考答案一、选择题(每小题3分,共30分)1、D【分析】抛物线开口向上,对称轴为x=-1.根据三点横坐标离对称轴的距离远近来判断纵坐标的大小.【详解】解:由函数可知:该函数的抛物线开口向上,且对称轴为x=-1.∵、、在函数上的三个点,且三点的横坐标距离对称轴的远近为:、、∴.故选:D.【点睛】主要考查二次函数图象上点的坐标特征.也可求得的对称点,使三点在对称轴的同一侧.2、D【分析】先证明△ADE∽△ABC,然后根据相似三角形的面积的比等于相似比的平方求解即可.【详解】∵BC∥DE,∴△ADE∽△ABC,∵DE把△ABC分成的两部分面积相等,∴△ADE:△ABC=1:2,∴.故选D.【点睛】本题主要考查了相似三角形的判定与性质,平行于三角形一边的直线和其他两边或两边延长线相交,所构成的三角形与原三角形相似;相似三角形面积的比等于相似比的平方.3、D【分析】由题意根据反比例函数的性质即可确定的符号,进行计算从而求解.【详解】解:因为反比例函数的图象在二、四象限,所以,解得.故选:D.【点睛】本题考查反比例函数的性质,注意掌握反比例函数,当k>0时,反比例函数图象在一、三象限;当k<0时,反比例函数图象在第二、四象限内.4、B【分析】根据相似三角形对应高的比等于相似比,即可得出结论.【详解】解:∵相似三角形对应高的比等于相似比∴相似比=故选B【点睛】此题主要考查了相似三角形的性质,相似三角形对应高的比等于相似比,熟记相关性质是解题的关键.5、C【分析】直接利用位似图形的性质进而分别分析得出答案.【详解】解:∵以点O为位似中心,把△ABC放大为原图形的2倍得到△A'B'C',∴△ABC∽△A'B'C',点O、C、C'共线,AO:OA'=BO:OB'=1:2,∴AB∥A'B',AO:OA'=1:1.∴A、B、D正确,C错误.故答案为:C.【点睛】本题主要考查了位似变换,正确把握位似图形的性质是解题的关键.6、D【分析】直接利用比例的性质分别判断得出答案.【详解】解:A、,则xy=21,故此选项错误;
B、,则xy=21,故此选项错误;
C、,则3y=7x,故此选项错误;
D、,则3x=7y,故此选项正确.
故选:D.【点睛】此题主要考查了比例的性质,正确将比例式变形是解题关键.7、C【分析】根据抛物线的解析式得出抛物线的性质,从而判断各选项.【详解】解:∵抛物线y=-3(x+1)2﹣2,
∴顶点坐标是(-1,-2),对称轴是直线x=-1,根据a=-3<0,得出开口向下,当x<-1时,y随x的增大而增大,
∴A、B、D说法错误;
C说法正确.
故选:C.【点睛】本题主要考查对二次函数的性质的理解和掌握,能熟练地运用二次函数的性质进行判断是解此题的关键.8、B【解析】试题解析:是关于的二次函数,解得:故选B.9、D【分析】根据关于原点对称的点的坐标特征:横、纵坐标都相反,进行判断即可.【详解】点A(-1,2)关于原点的对称点的坐标为(1,-2).故选:D.【点睛】本题考查点的坐标特征,熟记特殊点的坐标特征是关键.10、B【解析】根据圆心角与圆周角关系定理求出∠AOB的度数,进而由角的和差求得结果.【详解】解:∵∠ACB=50°,∴∠AOB=2∠ACB=100°,∵∠AOP=55°,∴∠POB=45°,故选:B.【点睛】本题是圆的一个计算题,主要考查了在同圆或等圆中,同弧或等弧所对的圆心角等于它所对的圆周角的2信倍.二、填空题(每小题3分,共24分)11、30或60【分析】射线与恰好有且只有一个公共点就是射线与相切,分两种情况画出图形,利用圆的切线的性质和30°角的直角三角形的性质求出旋转角,然后根据旋转速度=旋转的度数÷时间即得答案.【详解】解:如图1,当射线与在射线BA上方相切时,符合题意,设切点为C,连接OC,则OC⊥BP,于是,在直角△BOC中,∵BO=2,OC=1,∴∠OBC=30°,∴∠1=60°,此时射线旋转的速度为每秒60°÷2=30°;如图2,当射线与在射线BA下方相切时,也符合题意,设切点为D,连接OD,则OD⊥BP,于是,在直角△BOD中,∵BO=2,OD=1,∴∠OBD=30°,∴∠MBP=120°,此时射线旋转的速度为每秒120°÷2=60°;故答案为:30或60.【点睛】本题考查了圆的切线的性质、30°角的直角三角形的性质和旋转的有关概念,正确理解题意、熟练掌握基本知识是解题的关键.12、3【详解】由三角形的重心是三角形三边中线的交点,根据中心的性质可得,G是将AB边上的中线分成2:1两个部分,所以重合部分的三角形与原三角形的相似比是1:3,所以重合部分的三角形面积与原三角形的面积比是1:9,因为原三角形的面积是所以27,所以重合部分三角形面积是3,故答案为:3.13、【分析】根据对称性,作点B关于AC的对称点B′,连接B′M与AC的交点即为所求作的点P,再求直角三角形中30的临边即可.【详解】如图,作点B关于AC的对称点B′,连接B′M,交AC于点P,∴PB′=PB,此时PB+PM最小,∵矩形ABCD中,两条对角线相交所成的锐角为60,∴△ABP是等边三角形,∴∠ABP=60,∴∠B′=∠B′BP=30,∵∠DBC=30,∴∠BMB′=90,在Rt△BB′M中,BM=4,∠B′=30°,∴BB’=2BM=8∴B′M=,∴PM+PB′=PM+PB=B′M=4.故答案为4.【点睛】本题主要考查了最短路线问题,解决本题的关键是作点B关于AC的对称点B′.14、【分析】将△BPC绕点B逆时针旋转60°得△BEA,根据旋转的性质得BE=BP=4,AE=PC=5,∠PBE=60°,则△BPE为等边三角形,得到PE=PB=4,∠BPE=60°,在△AEP中,AE=5,延长BP,作AF⊥BP于点F,根据勾股定理的逆定理可得到△APE为直角三角形,且∠APE=90°,即可得到∠APB的度数,在Rt△APF中利用三角函数求得AF和PF的长,则在Rt△ABF中利用勾股定理求得AB的长,进而求得三角形ABC的面积.【详解】解:∵△ABC为等边三角形,∴BA=BC,可将△BPC绕点B逆时针旋转60°得△BEA,连EP,且延长BP,作AF⊥BP于点F.如图,∴BE=BP=4,AE=PC=5,∠PBE=60°,∴△BPE为等边三角形,∴PE=PB=4,∠BPE=60°,在△AEP中,AE=5,AP=3,PE=4,∴AE2=PE2+PA2,∴△APE为直角三角形,且∠APE=90°,∴∠APB=90°+60°=150°.∴∠APF=30°,∴在直角△APF中,AF=AP=,PF=AP=.∴在直角△ABF中,AB2=BF2+AF2=(4+)2+()2=25+12.∴△ABC的面积=AB2=(25+12)=;故答案为:.【点睛】本题考查了旋转的性质:旋转前后的两个图形全等,对应点与旋转中心的连线段的夹角等于旋转角,对应点到旋转中心的距离相等.也考查了等边三角形的判定与性质以及勾股定理的逆定理.15、.【解析】试题分析:由题意点A2的横坐标(+1),点A4的横坐标3(+1),点A6的横坐标(+1),点A8的横坐标6(+1).考点:(1)坐标与图形变化-旋转;(2)一次函数图象与几何变换16、2【分析】根据一元二次方程的根即方程的解的定义,将代入方程中,即可得到关于的方程,解方程即可得到答案.【详解】解:∵1是一元二次方程的一个根∴∴故答案是:【点睛】本题考查的是一元二次方程的根即方程的解的定义,一元二次方程的根就是一元二次方程的解,就是能够使方程左右两边相等的未知数的值,即用这个数代替未知数所得式子仍然成立.17、或【分析】分两种情况讨论:①M在N的上方,因为抛物线开口向上,故只要函数与函数组成的方程组无解即可.②M在N的下方,因为抛物线开口向上,对称轴为直线x=3,故只需考虑当x=-2和6时在直线的下方即可.【详解】①M在N的上方,因为抛物线开口向上,故只要函数与函数组成的方程组无解即可.可得:整理得:∴②M在N的下方,因为抛物线开口向上,对称轴为直线x=3,故只需考虑当x=-2和6时在直线的下方即可.当x=-2时,4+12-5a+3<6,解得:当x=6时,36-36-5a+3<-2,解得:a>1故综上所述:或【点睛】本题考查的是二次函数与一次函数是交点问题,本题的关键在于二次函数的取值范围,需考虑二次函数的开口方向.18、1【分析】先计算这20名同学各自家庭一个月的节水量的平均数,即样本平均数,然后乘以总数400即可解答.【详解】解:20名同学各自家庭一个月平均节约用水是:
(0.2×4+0.25×6+0.3×3+0.4×7)÷20=0.3(m3),
因此这400名同学的家庭一个月节约用水的总量大约是:
400×0.3=1(m3),
故答案为:1.【点睛】本题考查了通过样本去估计总体,只需将样本“成比例地放大”为总体即可,关键是求出样本的平均数.三、解答题(共66分)19、他能免费领取100G100G通用流量的概率为.【分析】列举出所有情况,让两个指针所指区域的颜色相同的情况数除以总情况数即为所求的概率.【详解】共有种等可能情况发生,其中指针所指区域颜色相同的情况有种,为(黄,黄),(红,红),∴【点睛】本题考查的是用列表法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.20、x1=10,x2=﹣1.【分析】用因式分解法即可求解.【详解】解:x2﹣6x﹣10=0,(x﹣10)(x+1)=0,∴x﹣10=0或x+1=0,∴x1=10,x2=﹣1.【点睛】本题考查一元二次方程的解法,解题的关键是掌握一元二次方程的解法,有直接开平方法、配方法、公式法、因式分解法.21、这个圆锥的底面半径为5cm,母线长为1cm.【分析】根据圆锥的母线即为其侧面展开图的扇形半径,圆锥底面圆的周长等于扇形弧长,可设底面半径为r,则易得圆锥的母线长即为扇形半径为2r,利用圆锥表面积公式求解即可.【详解】解:设这个圆锥的底面半径为rcm,∵圆锥的轴截面△ABC是等边三角形,∴圆锥母线的长为2rcm,∵圆锥的母线即为扇形半径,圆锥底面圆的周长等于扇形弧长,扇形面积+底面圆的面积=圆锥表面积.∴×2πr×2r+πr2=75π,解得:r=5,∴2r=1.故这个圆锥的底面半径为5cm,母线长为1cm.【点睛】此题主要考查了圆锥的相关知识,明确圆锥的母线即为其侧面展开图的扇形半径,圆锥底面圆的周长等于扇形弧长是解题关键.22、(1)75°;(2);(3).【分析】(1)根据平行线的性质可得出∠ADB=∠OAC=75°;(2)结合∠BOD=∠COA可得出△BOD∽△COA,利用相似三角形的性质可求出OD的值,进而可得出AD的值,由三角形内角和定理可得出∠ABD=75°=∠ADB,由等角对等边可得出AB的长;(3)过点B作BE∥AD交AC于点E,同(1)可得出AE的长.在Rt△AEB中,利用勾股定理可求出BE的长度,再在Rt△CAD中,利用勾股定理可求出DC的长,此题得解.【详解】(1)∵BD∥AC,∴∠ADB=∠OAC=75°.(2)∵∠BOD=∠COA,∠ADB=∠OAC,∴△BOD∽△COA,∴.又∵AO,∴ODAO,∴AD=AO+OD=.∵∠BAD=30°,∠ADB=75°,∴∠ABD=180°﹣∠BAD﹣∠ADB=75°=∠ADB,∴AB=AD=.(3)过点B作BE∥AD交AC于点E,如图所示.∵AC⊥AD,BE∥AD,∴∠DAC=∠BEA=90°.∵∠AOD=∠EOB,∴△AOD∽△EOB,∴.∵BO:OD=1:3,∴.∵AO=,∴EO,∴AE=.∵∠ABC=∠ACB=75°,∴∠BAC=30°,AB=AC,∴AB=2BE.在Rt△AEB中,BE2+AE2=AB2,即()2+BE2=(2BE)2,解得:BE=,∴AB=AC=,AD=1.在Rt△CAD中,AC2+AD2=CD2,即,解得:CD=.【点睛】本题考查了相似三角形的判定与性质、等腰三角形的判定与性质、勾股定理以及平行线的性质,解答本题的关键是:(2)利用相似三角形的性质求出OD的值;(3)利用勾股定理求出BE、CD的长度.23、(1)原方程无实数根.(2)x1=1,x2=﹣3.【分析】(1)判断一元二次方程根的情况,只要看根的判别式△=b2-4ac的值的符号即可判断:当△>1,方程有两个不相等的实数根;当△=1,方程有两个相等的实数根;当△<1,方程没有实数根.(2)把m的值代入方程,用因式分解法求解即可.【详解】解:(1)∵当m=3时,△=b2﹣4ac=22﹣4×3=﹣8<1,∴原方程无实数根.(2)当m=﹣3时,原方程变为x2+2x﹣3=1,∵(x﹣1)(x+3)=1,∴x﹣1=1,x+3=1.∴x1=1,x2=﹣3.24、(1);(2)单价为46元时,利润最大为3840元.(3)单价的范围是45元到55元.【分析】(1)可用待定系数法来确定y与x之间的函数关系式;(2)根据利润=销售量×单件的利润,然后将(1)中的函数式代入其中,求出利润和销售单件之间的关系式,然后根据其性质来判断出最大利润;(3)首先得出w与x的函数关系式,进而利用所获利润等于3600元时,对应x的值,根据增减性,求出x的取值范围.【详解】(1)由题意得:.故y与x之间的函数关系式为:y=-10x+700,(2)由题意,得-10x+700≥240,解得x≤46,设利润为w=(x-30)•y=(x-30)(-10x+
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 贺州学院《语言学导论》2022-2023学年第一学期期末试卷
- 2024年度机床设备采购租赁合同3篇
- 党史课程培训活动方案
- 学校庆典活动礼仪培训
- 2024年度高端装备制造生产线出口合同3篇
- 2024年度销售代理合同详细条款3篇
- 护理培训班开班
- 项目经理聘用合同
- 《疆医科大学药学院》课件
- 年度新能源汽车推广应用合同(2024版)
- 大坝防渗墙注水试验报告
- 废旧物资回收总体服务方案
- 不锈钢水箱检验报告模板内部信息可改
- 海康设备错误代码【精选文档】
- 扫描电镜原理和应用.
- 光电效应测定普朗克常数.ppt
- 保密工作台帐
- 奶茶店项目投资可行性分析报告
- 正山小种的特点
- ieee论文投稿模板
- 麦肯锡:如何撰写商业计划书(中文版)商业计划可行性报告
评论
0/150
提交评论