![甘肃省兰州市外国语学校2022年数学九上期末综合测试模拟试题含解析_第1页](http://file4.renrendoc.com/view/2b229bb6df1d2a7d3817f1a62bcb1ad3/2b229bb6df1d2a7d3817f1a62bcb1ad31.gif)
![甘肃省兰州市外国语学校2022年数学九上期末综合测试模拟试题含解析_第2页](http://file4.renrendoc.com/view/2b229bb6df1d2a7d3817f1a62bcb1ad3/2b229bb6df1d2a7d3817f1a62bcb1ad32.gif)
![甘肃省兰州市外国语学校2022年数学九上期末综合测试模拟试题含解析_第3页](http://file4.renrendoc.com/view/2b229bb6df1d2a7d3817f1a62bcb1ad3/2b229bb6df1d2a7d3817f1a62bcb1ad33.gif)
![甘肃省兰州市外国语学校2022年数学九上期末综合测试模拟试题含解析_第4页](http://file4.renrendoc.com/view/2b229bb6df1d2a7d3817f1a62bcb1ad3/2b229bb6df1d2a7d3817f1a62bcb1ad34.gif)
![甘肃省兰州市外国语学校2022年数学九上期末综合测试模拟试题含解析_第5页](http://file4.renrendoc.com/view/2b229bb6df1d2a7d3817f1a62bcb1ad3/2b229bb6df1d2a7d3817f1a62bcb1ad35.gif)
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年九上数学期末模拟试卷注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每小题3分,共30分)1.已知三点、、均在双曲线上,且,则下列各式正确的是(
)A. B. C. D.2.如图图形中,是中心对称图形的是()A. B. C. D.3.一元二次方程x2-2x=0根的判别式的值为()A.4 B.2 C.0 D.-44.在△ABC中,AD是BC边上的高,∠C=45°,sinB=,AD=1.则△ABC的面积为()A.1 B. C. D.25.如图,在矩形中,于,设,且,,则的长为()A. B. C. D.6.抛物线的对称轴为A. B. C. D.7.若,相似比为2,且的面积为12,则的面积为()A.3 B.6 C.24 D.488.如图,正方形中,为的中点,的垂直平分线分别交,及的延长线于点,,,连接,,,连接并延长交于点,则下列结论中:①;②;③;④;⑤;⑥;⑦.正确的结论的个数为()A.3 B.4 C.5 D.69.下列是一元二次方程有()①;②;③;④.A. B. C. D.10.学校要举行“读书月”活动,同学们设计了如下四种“读书月”活动标志图案,其中是中心对称图形的是()A. B. C. D.二、填空题(每小题3分,共24分)11.定义:在平面直角坐标系中,我们将函数的图象绕原点逆时针旋转后得到的新曲线称为“逆旋抛物线”.(1)如图①,己知点,在函数的图象上,抛物线的顶点为,若上三点、、是、、旋转后的对应点,连结,、,则__________;(2)如图②,逆旋抛物线与直线相交于点、,则__________.12.若关于的一元二次方程有两个相等的实数根,则的值是__________.13.已知一个不透明的盒子中装有3个红球,2个白球,这些球除颜色外均相同,现从盒中任意摸出1个球,则摸到红球的概率是________
.14.如图,是半圆的直径,,则的度数是_______.15.如图已知二次函数y1=x2+c与一次函数y2=x+c的图象如图所示,则当y1<y2时x的取值范围_____.16.已知关于x的一元二次方程(a-1)x2-x+a2-1=0的一个根是0,那么a的值为.17.如图,在平面直角坐标系中,已知函数和,点为轴正半轴上一点,为轴上一点,过作轴的垂线分别交,的图象于,两点,连接,,则的面积为_________.18.河北省赵县的赵州桥的拱桥是近似的抛物线形,建立如图所示的平面直角坐标系,其函数的关系式为,当水面离桥拱顶的高度DO为4m时,这时水面宽度AB为______________.三、解答题(共66分)19.(10分)如图,在平面直角坐标系中,已知的三个顶点的坐标分别为,,.(1)将绕着点顺时针旋转后得到,请在图中画出;(2)若把线段旋转过程中所扫过的扇形图形围成一个圆锥的侧面,求该圆锥底面圆的半径(结果保留根号).20.(6分)如图,在平面直角坐标系中,△ABC的顶点坐标分别为A(﹣2,﹣4)、B(0,﹣4)、C(1,﹣2).(1)△ABC关于原点O对称的图形是△A1B1C1,不用画图,请直接写出△A1B1C1的顶点坐标:A1,B1,C1;(2)在图中画出△ABC关于原点O逆时针旋转90°后的图形△A2B2C2,请直接写出△A2B2C2的顶点坐标:A2,B2,C2.21.(6分)将一副三角尺(在Rt△ABC中,∠ACB=90°,∠B=60°;在Rt△DEF中,∠EDF=90°,∠E=45°)如图1摆放,点D为AB边的中点,DE交AC于点P,DF经过点C,且BC=2.(1)求证:△ADC∽△APD;(2)求△APD的面积;(3)如图2,将△DEF绕点D顺时针方向旋转角α(0°<α<60°),此时的等腰直角三角尺记为△DE′F′,DE′交AC于点M,DF′交BC于点N,试判断PMCN的值是否随着α的变化而变化?如果不变,请求出PM22.(8分)同时抛掷3枚硬币做游戏,其中1元硬币1枚,5角硬币两枚.(1)求3枚硬币同时正面朝上的概率.(2)小张、小王约定:正面朝上按面值算,背面朝上按0元算.3枚落地后,若面值和为1.5元,则小张获得1分;若面值和为1元,则小王得1分.谁先得到10分,谁获胜,请问这个游戏是否公平?并说明理由.23.(8分)如图,点O为Rt△ABC斜边AB上的一点,以OA为半径的⊙O与边BC交于点D,与边AC交于点E,连接AD,且AD平分∠BAC.(1)试判断BC与⊙O的位置关系,并说明理由;(2)若∠BAC=60°,OA=2,求阴影部分的面积(结果保留π).24.(8分)已知抛物线y=ax2+2x﹣(a≠0)与y轴交于点A,与x轴的一个交点为B.(1)①请直接写出点A的坐标;②当抛物线的对称轴为直线x=﹣4时,请直接写出a=;(2)若点B为(3,0),当m2+2m+3≤x≤m2+2m+5,且am<0时,抛物线最低点的纵坐标为﹣,求m的值;(3)已知点C(﹣5,﹣3)和点D(5,1),若抛物线与线段CD有两个不同的交点,求a的取值范围.25.(10分)如图,在平面直角坐标系中,二次函数y=x2+bx+c的图象与x轴相交于点A、B,与y轴相交于点C,B点的坐标为(6,0),点M为抛物线上的一个动点.(1)若该二次函数图象的对称轴为直线x=4时:①求二次函数的表达式;②当点M位于x轴下方抛物线图象上时,过点M作x轴的垂线,交BC于点Q,求线段MQ的最大值;(2)过点M作BC的平行线,交抛物线于点N,设点M、N的横坐标为m、n.在点M运动的过程中,试问m+n的值是否会发生改变?若改变,请说明理由;若不变,请求出m+n的值.26.(10分)如图,⊙O的直径为AB,点C在⊙O上,点D,E分别在AB,AC的延长线上,DE⊥AE,垂足为E,∠A=∠CDE.(1)求证:CD是⊙O的切线;(2)若AB=4,BD=3,求CD的长.
参考答案一、选择题(每小题3分,共30分)1、B【分析】根据反比例函数的增减性解答即可.【详解】解:∵k=4>0,∴函数图象在一、三象限,∵∴横坐标为x1,x2的在第三象限,横坐标为x3的在第一象限;∵第三象限内点的纵坐标小于0,第一象限内点的纵坐标大于0,∴y3最大,∵在第三象限内,y随x的增大而减小,∴故答案为B.【点睛】本题考查了反比例函数的增减性,对点所在不同象限分类讨论是解答本题的关键.2、D【分析】根据中心对称图形的概念和识别.【详解】根据中心对称图形的概念和识别,可知D是中心对称图形,A、C是轴对称图形,D既不是中心对称图形,也不是轴对称图形.故选D.【点睛】本题考查中心对称图形,掌握中心对称图形的概念,会判断一个图形是否是中心对称图形.3、A【解析】根据一元二次方程判别式的公式进行计算即可.【详解】解:在这个方程中,a=1,b=-2,c=0,∴,故选:A.【点睛】本题考查一元二次方程判别式,熟记公式正确计算是本题的解题关键.4、C【分析】先由三角形的高的定义得出∠ADB=∠ADC=90°,解Rt△ADB,得出AB=3,根据勾股定理求出BD=2,解Rt△ADC,得出DC=1,然后根据三角形的面积公式计算即可;【详解】在Rt△ABD中,∵sinB==,又∵AD=1,∴AB=3,∵BD2=AB2﹣AD2,∴BD.在Rt△ADC中,∵∠C=45°,∴CD=AD=1.∴BC=BD+DC=2+1,∴S△ABC=•BC•AD=×(2+1)×1=,故选:C.【点睛】本题考查了三角形的面积问题,掌握三角形的面积公式是解题的关键.5、C【分析】根据矩形的性质可知:求AD的长就是求BC的长,易得∠BAC=∠ADE,于是可利用三角函数的知识先求出AC,然后在直角△ABC中根据勾股定理即可求出BC,进而可得答案.【详解】解:∵四边形ABCD是矩形,∴∠B=∠BAC=90°,BC=AD,∴∠BAC+∠DAE=90°,∵,∴∠ADE+∠DAE=90°,∴∠BAC=,在直角△ABC中,∵,,∴,∴AD=BC=.故选:C.【点睛】本题考查了矩形的性质、勾股定理和解直角三角形的知识,属于常考题型,熟练掌握矩形的性质和解直角三角形的知识是解题关键.6、B【分析】根据顶点式的坐标特点,直接写出对称轴即可.【详解】解∵:抛物线y=-x2+2是顶点式,
∴对称轴是直线x=0,即为y轴.
故选:B.【点睛】此题考查了二次函数的性质,二次函数y=a(x-h)2+k的顶点坐标为(h,k),对称轴为直线x=h.7、A【解析】试题分析:∵△ABC∽△DEF,相似比为2,∴△ABC与△DEF的面积比为4,∵△ABC的面积为12,∴△DEF的面积为:12×=1.故选A.考点:相似三角形的性质.8、B【分析】①作辅助线,构建三角形全等,证明△ADE≌△GKF,则FG=AE,可得FG=2AO;②设正方形ABCD的边长为2x,则AD=AB=2x,DE=EC=x,证明△ADE∽△HOA,得,于是可求BH及HE的值,可作出判断;③分别表示出OD、OC,根据勾股定理逆定理可以判断;④证明∠HEA=∠AED=∠ODE,OE≠DE,则∠DOE≠∠HEA,OD与HE不平行;
⑤由②可得,根据AR∥CD,得,则;⑥证明△HAE∽△ODE,可得,等量代换可得OE2=AH•DE;⑦分别计算HC、OG、BH的长,可得结论.【详解】解:①如图,过G作GK⊥AD于K,
∴∠GKF=90°,
∵四边形ABCD是正方形,
∴∠ADE=90°,AD=AB=GK,
∴∠ADE=∠GKF,
∵AE⊥FH,
∴∠AOF=∠OAF+∠AFO=90°,
∵∠OAF+∠AED=90°,
∴∠AFO=∠AED,
∴△ADE≌△GKF,
∴FG=AE,
∵FH是AE的中垂线,
∴AE=2AO,
∴FG=2AO,
故①正确;②设正方形ABCD的边长为2x,则AD=AB=2x,DE=EC=x,,易得△ADE∽△HOA,,,Rt△AHO中,由勾股定理得:AH=,∴BH=AH-AB=,∵HE=AH=,∴HE=5BH;
故②正确;③,,∴,∴OC与OD不垂直,故③错误;
④∵FH是AE的中垂线,
∴AH=EH,
∴∠HAE=∠HEA,
∵AB∥CD,
∴∠HAE=∠AED,
Rt△ADE中,∵O是AE的中点,
∴OD=AE=OE,
∴∠ODE=∠AED,
∴∠HEA=∠AED=∠ODE,
当∠DOE=∠HEA时,OD∥HE,
但AE>AD,即AE>CD,
∴OE>DE,即∠DOE≠∠HEA,
∴OD与HE不平行,
故④不正确;
⑤由②知BH=,,延长CM、BA交于R,
∵RA∥CE,
∴∠ARO=∠ECO,
∵AO=EO,∠ROA=∠COE,
∴△ARO≌△ECO,
∴AR=CE,
∵AR∥CD,,故⑤正确;
⑥由①知:∠HAE=∠AEH=∠OED=∠ODE,
∴△HAE∽△ODE,∵AE=2OE,OD=OE,
∴OE•2OE=AH•DE,
∴2OE2=AH•DE,
故⑥正确;
⑦由②知:HC=,∵AE=2AO=OH=,tan∠EAD=,,,∵FG=AE,,∴OG+BH=,∴OG+BH≠HC,
故⑦不正确;
综上所述,本题正确的有;①②⑤⑥,共4个,
故选:B.【点睛】本题是相似三角形的判定与性质以及勾股定理、线段垂直平分线的性质、正方形的性质的综合应用,正确作辅助线是关键,解答时证明三角形相似是难点.9、A【解析】根据一元二次方程的定义:含有一个未知数,并且未知数的最高次数是2的整式是一元二次方程.然后对每个方程作出准确的判断.【详解】解:①符合一元二次方程的定义,故正确;②方程二次项系数可能为0,故错误;③整理后不含二次项,故错误;④不是整式,故错误,故选:A.【点睛】本题考查的是一元二次方程的定义,根据定义对每个方程进行分析,然后作出准确的判断.10、C【分析】根据中心对称图形的概念作答.在同一平面内,如果把一个图形绕某一点旋转180°,旋转后的图形能和原图形完全重合,那么这个图形就叫做中心对称图形.这个旋转点,就叫做中心对称点.【详解】解:、不是中心对称图形,因为找不到任何这样的一点,使它绕这一点旋转180°以后,能够与它本身重合,即不满足中心对称图形的定义.不符合题意;、不是中心对称图形,因为找不到任何这样的一点,使它绕这一点旋转180°以后,能够与它本身重合,即不满足中心对称图形的定义.不符合题意;、图形中心绕旋转180°以后,能够与它本身重合,故是中心对称图形,符合题意;、不是中心对称图形,因为找不到任何这样的一点,使它绕这一点旋转180°以后,能够与它本身重合,即不满足中心对称图形的定义.不符合题意.故选:.【点睛】本题考查了中心对称图形的概念.特别注意,中心对称图形是要寻找对称中心,旋转180°后两部分重合.二、填空题(每小题3分,共24分)11、3;【分析】(1)求出点A、B的坐标,再根据割补法求△ABC的面积即可得到;
(2)将旋转后的MN和抛物线旋转到之前的状态,求出直线解析式及交点坐标,利用割补法求面积即可.【详解】解:(1)在上,令x=0,解得y=2,所以C(0,2),OC=2,将,代入,解得a=3,b=2,∴,,设,的直线解析式为,则,解得,直线AB解析式为,令x=0,解得,y=4,即OD=4,∴,∴(2)如图,由旋转知,,,∴,,直线,令,得∴∴∴【点睛】此题考查了二次函数与几何问题相结合的问题,将三角形的面积转化为解题关键.12、1【分析】因为关于的一元二次方程有两个相等的实数根,故,代入求解即可.【详解】根据题意可得:解得:m=1故答案为:1【点睛】本题考查的是一元二次方程的根的判别式,掌握根的判别式与方程的根的关系是关键.13、【分析】先求出这个口袋里一共有球的个数,然后用红球的个数除以球的总个数即可.【详解】因为共有5个球,其中红球由3个,所以从中任意摸出一个球是红球的概率是,故答案为.【点睛】本题考查了概率公式,掌握概率=所求情况数与总情况数之比是解题的关键.14、130【分析】根据AB为直径,得到∠ACB=90°,进而求出∠ABC,再根据圆内接四边形性质即可求出∠D.【详解】解:∵AB为直径,∴∠ACB=90°,∴∠ABC=90°-∠CAB=90°-40°=50°,∵四边形ABCD是圆内接四边形,∴∠D=180°-∠ABC=130°.故答案为:130°【点睛】本题考查了“直径所对的角是圆周角”、“圆内接四边形对角互补”、“直角三角形两锐角互余”等定理,熟知相关定理,并能灵活运用是解题关键.15、0<x<1.【解析】首先将两函数解析式联立得出其交点横坐标,进而得出当y1<y2时x的取值范围.【详解】解:由题意可得:x2+c=x+c,解得:x1=0,x2=1,则当y1<y2时x的取值范围:0<x<1.故答案为0<x<1.【点睛】此题主要考查了二次函数与一次函数,正确得出两函数的交点横坐标是解题关键.16、-1【解析】试题分析:把代入方程,即可得到关于a的方程,再结合二次项系数不能为0,即可得到结果.由题意得,解得,则考点:本题考查的是一元二次方程的根即方程的解的定义点评:解答本题的关键是熟练掌握一元二次方程的根就是一元二次方程的解,就是能够使方程左右两边相等的未知数的值.同时注意一元二次方程的二次项系数不能为0.17、1【分析】根据题意设点,则,再根据三角形面积公式求解即可.【详解】由题意得,设点,则∴故答案为:1.【点睛】本题考查了反比例函数的几何问题,掌握反比例函数的性质、三角形面积公式是解题的关键.18、【详解】根据题意B的纵坐标为﹣4,把y=﹣4代入y=﹣x2,得x=±10,∴A(﹣10,﹣4),B(10,﹣4),∴AB=20m.即水面宽度AB为20m.三、解答题(共66分)19、(1)见解析;(2)【分析】(1)先根据旋转变换确定A1、B1、C1,然后顺次连接即可;(2)线段BC旋转过程中扫过的面积为扇形BCC1的面积,然后求扇形的面积即可.【详解】解:(1)如图所示,所求;(2)在中,∵∴答:该圆锥底面圆的半径为.【点睛】本题考查了旋转变换以及扇形面积,根据旋转变换做出是解答本题的关键.20、(1)(2,4),(0,4),(﹣1,2);(2)作图见解析;(4,﹣2),(4,0),(2,1).【分析】(1)根据中心对称图形的概念求解可得;(2)利用旋转变换的定义和性质作出对应点,再首尾顺次连接即可得.【详解】(1)△A1B1C1的顶点坐标:A1(2,4),B1(0,4),C1(﹣1,2),故答案为:(2,4),(0,4),(﹣1,2).(2)如图所示,△A2B2C2即为所求,A2(4,﹣2),B2(4,0),C2(2,1),故答案为:(4,﹣2),(4,0),(2,1).【点睛】本题考查中心对称图形和旋转变换,作旋转变换时需注意旋转中心和旋转角,分清逆时针和顺时针旋转.21、(1)见解析;(2)33;(3)不会随着α【解析】(1)先判断出△BCD是等边三角形,进而求出∠ADP=∠ACD,即可得出结论;
(2)求出PH,最后用三角形的面积公式即可得出结论;
(3)只要证明△DPM和△DCN相似,再根据相似三角形对应边成比例即可证明.【详解】(1)证明:∵△ABC是直角三角形,点D是AB的中点,∴AD=BD=CD,∵在△BCD中,BC=BD且∠B=60°,∴△BCD是等边三角形,∴∠BCD=∠BDC=60°,∴∠ACD=90°-∠BCD=30°,∠ADE=180°-∠BDC-∠EDF=30°,在△ADC与△APD中,∠A=∠A,∠ACD=∠ADP,∴△ADC∽△APD.(2)由(1)已得△BCD是等边三角形,∴BD=BC=AD=2,过点P作PH⊥AD于点H,∵∠ADP=30°=90°-∠B=∠A,∴AH=DH=1,tanA=PHAH∴PH=33∴△APD的面积=12AD·PH=(3)PMCN的值不会随着α的变化而变化∵∠MPD=∠A+∠ADE=30°+30°=60°,∴∠MPD=∠BCD=60°,在△MPD与△NCD中,∠MPD=∠NCD=60°,∠PDM=∠CDN=α,∴△MPD∽△NCD,∴PMCN由(1)知AD=CD,∴PMCN由(2)可知PD=2AH,∴PD=23∴PMCN∴PMCN的值不会随着α的变化而变化【点睛】属于相似三角形的综合题,考查相似三角形的判定与性质,锐角三角函数,三角形的面积等,综合性比较强,对学生综合能力要求较高.22、(1);(2)公平,见解析【分析】(1)用列表法或树状图法表示出所有可能出现的结果,进而求出3枚硬币同时正面朝上的概率.(2)求出小张获得1分;小王得1分的概率,再判断游戏的公平性.【详解】解:(1)用树状图表示所有可能出现的情况如下:∴P(3枚硬币同时正面朝上)=;(2)公平,所有面值出现的情况如图所示:∵P(小张获得1分),P(小王得1分),∴P(小张获得1分)=P(小王得1分),因此对于他们来说是公平的.【点睛】本题考查了树状图和概率计算公式,解决本题的关键是正确理解题意,熟练掌握树状图的画法和概率的计算公式.23、(1)BC与⊙O相切,理由见解析;(2).【解析】试题分析:(1)连接推出根据切线的判定推出即可;
(2)连接求出阴影部分的面积=扇形的面积,求出扇形的面积即可.试题解析:(1)BC与相切,理由:连接OD,∵AD平分∠BAC,∴∠BAD=∠DAC,∵AO=DO,∴∠BAD=∠ADO,∴∠CAD=∠ADO,∴OD⊥BC,∴BC与相切;(2)连接OE,ED,∴△OAE为等边三角形,又∴阴影部分的面积=S扇形ODE24、(1)①;②;(2);(1)a>或a<﹣1.【分析】(1)①令x=0,由抛物线的解析式求出y的值,便可得A点坐标;②根据抛物线的对称轴公式列出a的方程,便可求出a的值;(2)把B点坐标代入抛物线的解析式,便可求得a的值,再结合已知条件am<0,得m的取值范围,再根据二次函数的性质结合条件当m2+2m+1≤x≤m2+2m+5时,抛物线最低点的纵坐标为,列出m的方程,求得m的值,进而得出m的准确值;(1)用待定系数法求出CD的解析式,再求出抛物线的对称轴,进而分两种情况:当a>0时,抛物线的顶点在y轴左边,要使抛物线与线段CD有两个不同的交点,则C、D两必须在抛物线上方,顶点在CD下方,根据这一条件列出a不等式组,进行解答;当a<0时,抛物线的顶点在y轴的右边,要使抛物线与线段CD有两个不同的交点,则C、D两必须在抛物线下方,抛物线的顶点必须在CD上方,据此列出a的不等式组进行解答.【详解】(1)①令x=0,得,∴,故答案为:;②∵抛物线的对称轴为直线x=﹣4,∴,∴a=,故答案为:;(2)∵点B为(1,0),∴9a+6﹣=0,∴a=﹣,∴抛物线的解析式为:,∴对称轴为x=﹣2,∵am<0,∴m>0,∴m2+2m+1>1>﹣2,∵当m2+2m+1≤x≤m2+2m+5时,y随x的增大而减小,∵当m2+2m+1≤x≤m2+2m+5,且am<0时,抛物线最低点的纵坐标为﹣,∴,整理得(m2+2m+5)2﹣4(m2+2m+5)﹣12=0,解得,m2+2m+5=6,或m2+2m+5=﹣2(△<0,无解),∴,∵m>0,∴;(1)设直线CD的解析式为y=kx+b(k≠0),∵点C(﹣5,﹣1)和点D(5,1),∴,∴,∴CD的解析式为,∵y=ax2+2x﹣(a≠0)∴对称轴为,①当a>0时,,则抛物线的顶点在y轴左侧,∵抛物线与线段CD有两个不同的交点,∴,∴;②当a<0时,,则抛物线的顶点在y轴左侧,∵抛物线与线段CD有两个不同的交点,∴,∴
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 临时劳动合同管理规定
- 一纸合同定乾坤:离婚孩子抚养权新规
- 个人合同转让授权委托书范文
- 个人与个人投资合作合同
- 中外技术研发合作合同范本
- 个人贷款合同模板版
- 个人与公司间的借款合同范本
- 个人与企业土地购置合同
- 上海市常用劳务合同范本
- 个人房产抵押借款合同
- 2022年中国电信维护岗位认证动力专业考试题库大全-上(单选、多选题)
- 《电气作业安全培训》课件
- 水平二(四年级第一学期)体育《小足球(18课时)》大单元教学计划
- 《关于时间管理》课件
- 医药高等数学智慧树知到课后章节答案2023年下浙江中医药大学
- 城市道路智慧路灯项目 投标方案(技术标)
- 水泥采购投标方案(技术标)
- 医院招标采购管理办法及实施细则(试行)
- 初中英语-Unit2 My dream job(writing)教学设计学情分析教材分析课后反思
- 广州市劳动仲裁申请书
- 江西省上饶市高三一模理综化学试题附参考答案
评论
0/150
提交评论