




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年八上数学期末模拟试卷注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每题4分,共48分)1.若分式的值为0,则x的值为()A.-2 B.0 C.2 D.±22.如图,△ABC中,AD平分∠BAC,DE∥AC,且∠B=40°,∠C=60°,则∠ADE的度数为()A.80° B.30° C.40° D.50°3.如图,等腰直角三角形纸片ABC中,∠C=90°,把纸片沿EF对折后,点A恰好落在BC上的点D处,若CE=1,AB=4,则下列结论一定正确的个数是()①BC=CD;②BD>CE;③∠CED+∠DFB=2∠EDF;④△DCE与△BDF的周长相等;A.1个 B.2个 C.3个 D.4个4.我市某中学九年级(1)班为开展“阳光体育运动”,决定自筹资金为班级购买体育器材,全班50名同学捐款情况如下表:捐款(元)51015202530人数361111136问该班同学捐款金额的众数和中位数分别是()A.13,11 B.25,30 C.20,25 D.25,205.用直尺和圆规作一个角的平分线的示意图如图所示,则能说明∠AOC=∠BOC的依据是()A.SSS B.ASA C.AAS D.SAS6.如图所示,小琳总结了“解可化为一元一次方程的分式方程”的运算流程,那么A和B分别代表的是()A.分式的基本性质,最简公分母=0B.分式的基本性质,最简公分母≠0C.等式的基本性质2,最简公分母=0D.等式的基本性质2,最简公分母≠07.已知关于x的分式方程的解是正数,则m的取值范围是()A.m<4且m≠3 B.m<4 C.m≤4且m≠3 D.m>5且m≠68.如图,已知AB=AC,AF=AE,∠EAF=∠BAC,点C、D、E、F共线.则下列结论,其中正确的是()①△AFB≌△AEC;②BF=CE;③∠BFC=∠EAF;④AB=BC.A.①②③ B.①②④ C.①② D.①②③④9.已知为的内角所对应的边,满足下列条件的三角形不是直角三角形的是()A. B.C. D.10.下列各组数,可以作为直角三角形的三边长的是()A.2,3,4 B.7,24,25 C.8,12,20 D.5,13,1511.如图,若BD是等边△ABC的一条中线,延长BC至点E,使CE=CD=x,连接DE,则DE的长为()A. B. C. D.12.下列说法正确的是()A.一个命题一定有逆命题 B.一个定理一定有逆定理C.真命题的逆命题一定是真命题 D.假命题的逆命题一定是假命题二、填空题(每题4分,共24分)13.一组数据4,,,4,,4,,4中,出现次数最多的数是4,其频率是__________.14.如图,将平行四边形ABCD的边DC延长到E,使,连接AE交BC于F,,当______时,四边形ABEC是矩形.15.已知,则_______________.16.如图,已知的两条直角边长分别为6、8,分别以它的三边为直径向上作三个半圆,求图中阴影部分的面积为______.17.已知正方形ABCD的边长为4,点E,F分别在AD,DC上,AE=DF=1,BE与AF相交于点G,点H为BF的中点,连接GH,则GH的长为_____.18.如图,△ABC中,D为BC边上的一点,BD:DC=2:3,△ABC的面积为10,则△ABD的面积是_________________三、解答题(共78分)19.(8分)在如图所示的正方形网格中,每个小正方形的边长为1,格点三角形(顶点是网格线的交点的三角形)ABC的顶点A,C的坐标分别为(﹣4,5),(﹣1,3).(1)在如图所示的网格平面内作出平面直角坐标系,标注原点以及x轴、y轴;(2)作出△ABC关于y轴对称的△A′B′C′,并写出点B′的坐标;(3)点P是x轴上的动点,在图中找出使△A′BP周长最小时的点P,直接写出点P的坐标是:.20.(8分)如图,直线:交轴于点,直线交轴于点,与的交点的横坐标为1,连结.(1)求直线的函数表达式;(2)求的面积.21.(8分)已知,与成反比例,与成正比例,且当时,,.求关于的函数解析式.22.(10分)通过小学的学习我们知道,分数可分为“真分数”和“假分数”,并且假分数都可化为带分数.类比分数,对于分式也可以定义:对于只含有一个字母的分式,当分子的次数大于或等于分母的次数时,我们称之为“假分式”;当分子的次数小于分母的次数时,我们称之为“真分式”.类似的,假分式也可以化为带分式(即:整式与真分式的和的形式).如:解决下列问题:(1)分式是________分式(填“真”或“假”);(2)假分式可化为带分式_________的形式;请写出你的推导过程;(3)如果分式的值为整数,那么的整数值为_________.23.(10分)解下列分式方程:(1)(2).24.(10分)如图,已知A(0,4)、B(﹣2,2)、C(3,0).(1)作△ABC关于x轴对称的△A1B1C1,并写出点B的对应点B1的坐标;(2)求△A1B1C1的面积S.25.(12分)已知:如图,点在同一条直线上,求证:26.如图,在△ABC中,AD平分∠BAC交BC于点D,AE⊥BC,垂足为E,且CF∥AD.(1)如图1,若△ABC是锐角三角形,∠B=30°,∠ACB=70°,则∠CFE=度;(2)若图1中的∠B=x,∠ACB=y,则∠CFE=;(用含x、y的代数式表示)(3)如图2,若△ABC是钝角三角形,其他条件不变,则(2)中的结论还成立吗?请说明理由.
参考答案一、选择题(每题4分,共48分)1、C【解析】由题意可知:,解得:x=2,故选C.2、C【解析】根据三角形的内角和可知∠BAC=180°-∠B-∠C=80°,然后根据角平分线的性质可知可得∠EAD=∠CAD=40°,再由平行线的性质(两直线平行,内错角相等)可得∠ADE=∠DAC=40°.故选C.3、D【分析】利用等腰直角三角形的相关性质运用勾股定理以及对应角度的关系来推导对应选项的结论即可.【详解】解:由AB=4可得AC=BC=4,则AE=3=DE,由勾股定理可得CD=2,①正确;BD=4-2,②正确;由∠A=∠EDF=45°,则2∠EDF=90°,∠CED=90°-∠CDE=90°-(∠CDF-45°)=135°-∠CDF=135°-(∠DFB+45°)=90°-∠DFB,故∠CED+∠DFB=90°=2∠EDF,③正确;△DCE的周长=CD+CE+DE=2+4,△BDF的周长=BD+BF+DF=BD+AB=4+4-2=4+2,④正确;故正确的选项有4个,故选:D.【点睛】本题主要考查等腰直角三角形的相关性质以及勾股定理的运用,本题涉及的等腰直角三角形、翻折、勾股定理以及边角关系,需要熟练地掌握对应性质以及灵活的运用.4、D【分析】根据众数和中位数的定义即可得到结果.【详解】解:∵25是这组数据中出现次数最多的数据,∴25是这组数据的众数;∵已知数据是由小到大的顺序排列,第25个和第26个数都是1,∴这组数据的中位数为1.故选D.【点睛】本题考查的是众数和中位数,熟练掌握基本概念是解题的关键.5、A【分析】连接NC,MC,根据SSS证△ONC≌△OMC,即可推出答案.【详解】解:连接NC,MC,在△ONC和△OMC中,,∴△ONC≌△OMC(SSS),∴∠AOC=∠BOC,故选A.【点睛】本题考查了全等三角形的性质和判定的应用,主要考查学生运用性质进行推理的能力,题型较好,难度适中.6、C【解析】根据解分式方程的步骤,可得答案.【详解】去分母得依据是等式基本性质2,检验时最简公分母等于零,原分式方程无解.故答案选:C.【点睛】本题考查了解分式方程,解题的关键是熟练的掌握解分式方程的方法.7、A【解析】方程两边同时乘以x-1得,1-m-(x-1)+2=0,解得x=1-m.
∵x为正数,
∴1-m>0,解得m<1.
∵x≠1,
∴1-m≠1,即m≠2.
∴m的取值范围是m<1且m≠2.
故选A.8、A【分析】根据题意结合图形证明△AFB≌△AEC;利用四点共圆及全等三角形的性质问题即可解决.【详解】如图,∵∠EAF=∠BAC,∴∠BAF=∠CAE;在△AFB与△AEC中,,∴△AFB≌△AEC(SAS),∴BF=CE;∠ABF=∠ACE,∴A、F、B、C四点共圆,∴∠BFC=∠BAC=∠EAF;故①、②、③正确,④错误.故选A..【点睛】本题主要考查了全等三角形的判定及其性质的应用问题;解题的关键是准确找出图形中隐含的全等三角形,灵活运用四点共圆等几何知识来分析、判断、推理或证明.9、C【分析】运用直角三角形的判定方法:当一个角是直角时,或两边的平方和等于第三条边的平方,也可得出它是直角三角形.分别判定即可.【详解】A、∵,∴,即,∴△ABC是直角三角形,故本选项符合题意;B、∵,∴∴a2+b2=c2,∴△ABC是直角三角形,故本选项不符合题意;C、∵∠A:∠B:∠C=5:4:3,又∵∠A+∠B+∠C=180°,∴最大角∠A=75°,∴△ABC不是直角三角形,故本选项符合题意;D、∵a=c,b=c,(c)2+(c)2=c2,∴a2+b2=c2,∴△ABC是直角三角形,故本选项不符合题意.故选:C.【点睛】此题主要考查了勾股定理的逆定理、直角三角形的判定方法,灵活的应用此定理是解决问题的关键.10、B【解析】试题解析:A、∵22+32≠42,∴不能构成直角三角形;B、∵72+242=252,∴能构成直角三角形;C、∵82+122≠202,∴不能构成直角三角形;D、∵52+132≠152,∴不能构成直角三角形.故选B.11、D【分析】根据等腰三角形和三角形外角性质求出BD=DE,求出BC,在Rt△BDC中,由勾股定理求出BD即可.【详解】解:∵△ABC为等边三角形,
∴∠ABC=∠ACB=60°,AB=BC,
∵BD为中线,∵CD=CE,
∴∠E=∠CDE,
∵∠E+∠CDE=∠ACB,
∴∠E=30°=∠DBC,
∴BD=DE,
∵BD是AC中线,CD=x,
∴AD=DC=x,
∵△ABC是等边三角形,
∴BC=AC=2x,BD⊥AC,
在Rt△BDC中,由勾股定理得:故选:D.【点睛】本题考查了等边三角形性质,勾股定理,等腰三角形性质,三角形的外角性质等知识点的应用,关键是求出DE=BD和求出BD的长.12、A【分析】命题由题设和结论两部分组成,所以所有的命题都有逆命题,但是所有的定理不一定有逆定理,真命题的逆命题不一定是真命题,假命题的逆命题不一定是假命题.【详解】解:A、每个命题都有逆命题,故本选项正确.B、每个定理不一定都有逆定理,故本选项错误.C、真命题的逆命题不一定是真命题,故本选项错误.D、假命题的逆命题不一定是假命题,故本选项错误.故选A.【点睛】本题考查命题的概念,以及逆命题,逆定理的概念和真假命题的概念等.二、填空题(每题4分,共24分)13、0.5【分析】根据频率=某数出现的次数÷数字总数,4在这组数据中出现了4次,这组数据总共有8个数字,代入公式即可求解.【详解】解:4÷8=0.5故答案为:0.5【点睛】本题主要考查的是频率的计算,正确的掌握频率的计算公式,将相应的数据代入是解本题的关键.14、1【分析】首先根据四边形ABCD是平行四边形,得到四边形ABEC是平行四边形,然后证得FC=FE,利用对角线互相相等的四边形是矩形判定四边形ABEC是矩形.【详解】解:当∠AFC=1∠D时,四边形ABEC是矩形.∵四边形ABCD是平行四边形,∴BC∥AD,∠BCE=∠D,由题意易得AB∥EC,AB∥EC,∴四边形ABEC是平行四边形.∵∠AFC=∠FEC+∠BCE,∴当∠AFC=1∠D时,则有∠FEC=∠FCE,∴FC=FE,∴四边形ABEC是矩形,故答案为1.【点睛】此题考查了平行四边形的性质以及矩形的判定.此题难度适中,注意掌握数形结合思想的应用,解题的关键是了解矩形的判定定理.15、【分析】依据比例的性质,即可得到a=b,再代入分式化简计算即可.【详解】解:∵,
∴a=5a-5b,
∴a=b,
∴,
故答案为:.【点睛】本题主要考查了比例的性质,解题时注意:内项之积等于外项之积.16、1【分析】先分别求出以6、8为直径的三个半圆的面积,再求出三角形ABC的面积,阴影部分的面积是三角形ABC的面积加以AC为直径和以BC为直径的两个半圆的面积再减去以AB为直径的半圆的面积.【详解】解:由勾股定理不难得到AB=10以AC为直径的半圆的面积:π×(6÷2)2×=π=4.5π,以BC为直径的半圆的面积:π×(8÷2)2×=8π,以AB为直径的半圆的面积:π×(10÷2)2×=12.5π,三角形ABC的面积:6×8×=1,阴影部分的面积:1+4.5π+8π−12.5π=1;故答案是:1.【点睛】本题考查了勾股定理的运用,解答此题的关键是,根据图形中半圆的面积、三角形的面积与阴影部分的面积的关系,找出对应部分的面积,列式解答即可.17、.【分析】利用正方形的性质证出△ABE≌△DAF,所以∠ABE=∠DAF,进而证得△GBF是直角三角形,利用直角三角形斜边中线等于斜边一半可知GH=BF,最后利用勾股定理即可解决问题.【详解】解:∵四边形ABCD为正方形,∴∠BAE=∠D=90°,AB=AD,在△ABE和△DAF中,∵,∴△ABE≌△DAF(SAS),∴∠ABE=∠DAF,∵∠ABE+∠BEA=90°,∴∠DAF+∠BEA=90°,∴∠AGE=∠BGF=90°,∵点H为BF的中点,∴GH=BF,∵BC=4、CF=CD﹣DF=4﹣1=3,∴BF==5,∴GH=BF=,故答案为:.【点睛】本题考点涉及正方形的性质、三角形全等的证明、直角三角形斜边中线定理、勾股定理等知识点,难度适中,熟练掌握相关性质定理是解题关键.18、1【分析】利用面积公式可得出△ABD与△ABC等高,只需求出BD与BC的比值即可求出三角形ABD的面积.【详解】解:∵BD:DC=2:3,
∴BD=BC.
△ABD的面积=BD•h=×
BC•h=△ABC的面积=×10=1.故答案为:1.【点睛】本题考查了三角形面积公式以及根据公式计算三角形面积的能力.三、解答题(共78分)19、(1)详见解析;(2)图详见解析,B′的坐标(2,1);(3)(﹣1,0).【分析】(1)根据A,C两点的坐标确定坐标系即可.(2)分别作出A,B,C的对应点A′,B′,C′即可.(3)作点B关于x轴的对称点B″,连接A′B″交x轴于p,点P即为所求.【详解】解:(1)平面直角坐标系如图所示:(2)如图△A′B′C′即为所求,由图可知,B′(2,1).(3)如图所示,点P(﹣1,0)即为所求点.故答案为:(﹣1,0).【点睛】本题考查作图——轴对称变换,轴对称——最短路径问题等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.20、(1);(2).【分析】(1)先求出点P坐标,再利用待定系数法即可求解直线的函数表达式;(2)求出点C坐标,再根据即可求解.【详解】(1)将代入:得设直线:将,代入得:∴直线:,(2):与轴的交点设直线:与轴的交点:∴【点睛】此题主要考查一次函数与几何综合,解题的关键是熟知一次函数的图像与性质.21、【分析】根据题意设出反比例函数与正比例函数的解析式,代入y=y1+y2,再把当x=2时,y1=4,y=2代入y关于x的关系式,求出未知数的值,即可求出y与x之间的函数关系式.【详解】根据题意,设,.,,当时,,,,,,.【点睛】本题考查了正比例函数及反比例函数的定义及用待定系数法求函数的解析式的知识点,只要根据题意设出函数的关系式,把已知对应值代入即可.22、真【分析】(1)比较分式的分子分母的次数容易判定出它是真分式还是假分式;(2)分式分子变形为,利用同分母分式减法逆运算法则变形即可得;(3)在的基础上,对于这个带分式,只要满足为整数即可求出整数x的值.【详解】(1)分式的分子是常数,其次数为0,分母x的次数为1,分母的次数大于分子的次数,所以是真分;(2);(3)由(2)得:,当为整数时,原分式的值为整数,∴此时,整数x可能满足:或或或∴.故答案为:真;;【点睛】本题考查的是与分式有关的新定义问题、整式次数的判定和分式的相关运算,根据新定义及例题的变形方法解决相关问题是解决此类问题的关键.23、(1)无解(2)【解析】两分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【详解】(1)去分母得:2x-2+3x+3=6,解得:x=1,经检验x=1是增根,分式方程无解;(2)去分母得:1-2x=2x-4,解得:x=,经检验x=是分式方程的解.【点睛】此题考查了解分式方程,利用了转化的思想,解分式方程注意要检验.24、(1)B1(﹣2,﹣2)(2)1【解析】试题分析:(1)根据关于x轴对称点的坐标特点,分别找出A、B、C三点的对称点坐标,然后描出对称点,再连接可得△A1B1C1,根据图形可直接写出点B1的坐标即可;(2)利用矩形的面积减去周围多余小三角形的面积即可.试题解析:(1)如图△A1B1C1即为所求作,B1(﹣2,﹣2);(2)△A1B1C1的面积:S=4×5﹣(2×2+2×5+3×4)=1.25、见解析【分析】先根据SSS证明△ACE≌△BDF,得出∠A=∠B,即可
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年 湖南株洲消防招聘考试笔试试题附答案
- 2025年 贵州水利水电职业技术学院招聘教师附答案
- 2025年养护机械市场分析现状
- 中国背投电视行业发展潜力预测及投资战略研究报告
- 焦化耐火设备项目投资可行性研究分析报告(2024-2030版)
- 2025年中国兔毛手袋行业市场发展前景及发展趋势与投资战略研究报告
- 长江存储培训课件
- 视频拍摄制作合同
- 技术服务合同
- 中国电子特种气体行业市场调查研究及投资前景预测报告
- 国开《离散数学》形考任务1-3试题及答案
- 2025年互联网营销师-直播销售员竞赛考试题库及答案
- 社会体育指导与管理专业大学生职业生涯发展
- 反恐验厂管理手册程序文件制度文件表单一整套
- 老旧小区改造、提升项目部与小区居民、单位协调方案
- 反诈宣讲培训课件
- 上海市幼儿园幼小衔接活动指导意见(修订稿)
- 培训学校收费和退费管理制度
- 护理安全意识
- 法社会学教程(第三版)教学
- 6综合与实践(北京五日游)(教案)-六年级下册数学人教版
评论
0/150
提交评论