版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年九上数学期末模拟试卷注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题(每题4分,共48分)1.平面直角坐标系中,点P,Q在同一反比例函数图象上的是()A.P(-2,-3),Q(3,-2) B.P(2,-3),Q(3,2)C.P(2,3),Q(-4,-) D.P(-2,3),Q(-3,-2)2.如图所示,∠APB=30°,O为PA上一点,且PO=6,以点O为圆心,半径为3的圆与PB的位置关系是()A.相离 B.相切C.相交 D.相切、相离或相交3.已知⊙O的半径为5,若PO=4,则点P与⊙O的位置关系是()A.点P在⊙O内 B.点P在⊙O上 C.点P在⊙O外 D.无法判断4.已知点、、在函数上,则、、的大小关系是().(用“>”连结起来)A. B. C. D.5.对于二次函数y=2(x﹣1)2﹣3,下列说法正确的是()A.图象开口向下B.图象和y轴交点的纵坐标为﹣3C.x<1时,y随x的增大而减小D.图象的对称轴是直线x=﹣16.若x=5是方程的一个根,则m的值是()A.-5 B.5 C.10 D.-107.如图,某小区计划在一块长为31m,宽为10m的矩形空地上修建三条同样宽的道路,剩余的空地上种植草坪,使草坪的面积为570m1.若设道路的宽为xm,则下面所列方程正确的是()A.(31﹣1x)(10﹣x)=570 B.31x+1×10x=31×10﹣570C.(31﹣x)(10﹣x)=31×10﹣570 D.31x+1×10x﹣1x1=5708.某超市一月份的营业额为200万元,已知第一季度的总营业额共1000万元,如果平均每月增长率为x,则由题意列方程应为()A.200(1+x)2=1000B.200+200×2x=1000C.200+200×3x=1000D.200[1+(1+x)+(1+x)2]=10009.已知抛物线y=ax2+bx+c(a<0)过A(-3,0),B(1,0),C(-5,y1),D(5,y2)四点,则y1与y2的大小关系是()A.y1>y2 B.y1=y2 C.y1<y2 D.不能确定10.下列说法正确的是()A.购买江苏省体育彩票有“中奖”与“不中奖”两种情况,所以中奖的概率是B.国家级射击运动员射靶一次,正中靶心是必然事件C.如果在若干次试验中一个事件发生的频率是,那么这个事件发生的概率一定也是D.如果车间生产的零件不合格的概率为,那么平均每检查1000个零件会查到1个次品11.某校校园内有一个大正方形花坛,如图甲所示,它由四个边长为3米的小正方形组成,且每个小正方形的种植方案相同.其中的一个小正方形ABCD如图乙所示,DG=1米,AE=AF=x米,在五边形EFBCG区域上种植花卉,则大正方形花坛种植花卉的面积y与x的函数图象大致是()A. B. C. D.12.下列各数中,属于无理数的是()A. B. C. D.二、填空题(每题4分,共24分)13.在Rt△ABC中,∠C=90°,若sinA=,则cosB=_____.14.如图,圆锥的底面半径OB=6cm,高OC=8cm,则该圆锥的侧面积是_____cm1.15.绕着A点旋转后得到,若,,则旋转角等于_____.16.如图,在菱形中,边长为10,.顺次连结菱形各边中点,可得四边形;顺次连结四边形各边中点,可得四边形;顺次连结四边形各边中点,可得四边形;按此规律继续下去….则四边形的周长是_________.17.若△ABC∽△A′B′C′,且=,△ABC的周长为12cm,则△A′B′C′的周长为_______cm.18.若二次函数y=ax2+bx+c(a≠0)的图象的顶点在第一象限,且过点(0,1)和(﹣1,0).则S=a+b+c的值的变化范围是_____.三、解答题(共78分)19.(8分)如图,在长为10cm,宽为8cm的矩形的四个角上截去四个全等的小正方形,使得留下的图形(图中阴影部分)面积是原矩形面积的80%,求所截去小正方形的边长.20.(8分)姐妹两人在50米的跑道上进行短路比赛,两人从出发点同时起跑,姐姐到达终点时,妹妹离终点还差3米,已知姐妹两人的平均速度分别为a米/秒、b米/秒.(1)如果两人重新开始比赛,姐姐从起点向后退3米,姐妹同时起跑,两人能否同时到达终点?若能,请求出两人到达终点的时间;若不能,请说明谁先到达终点.(2)如果两人想同时到达终点,应如何安排两人的起跑位置?请你设计两种方案.21.(8分)已知△ABC和△A′B′C′的顶点坐标如下表:(1)将下表补充完整,并在下面的坐标系中,画出△A′B′C′;(,)(,)(2)观察△ABC与△A′B′C′,写出有关这两个三角形关系的一个正确结论.22.(10分)某影城装修后重新开业,试营业期间统计发现,影院每天售出的电影票张数y(张)与电影票售价x(元/张)之间满足一次函数的关系:y=﹣2x+240(50≤x≤80),x是整数,影院每天运营成本为2200元,设影院每天的利润为w(元)(利润=票房收入﹣运营成本)(1)试求w与x之间的函数关系式;(2)影院将电影票售价定为多少时,每天获利最大?最大利润是多少元?23.(10分)在中,分别是的中点,连接求证:四边形是矩形;请用无刻度的直尺在图中作出的平分线(保留作图痕迹,不写作法).24.(10分)已知关于的一元二次方程有两个实数根,.(1)求的取值范围:(2)当时,求的值.25.(12分)如图,正方形的边长为9,、分别是、边上的点,且.将绕点逆时针旋转,得到.(1)求证:(2)当时,求的长.26.如图,一次函数的图象与反比例函数的图象相交于两点,与轴相交于点.(1)求一次函数与反比例函数的解析式;(2)若点与点关于轴对称,求的面积;(3)若是反比例函数上的两点,当时,比与的大小关系.
参考答案一、选择题(每题4分,共48分)1、C【解析】根据反比函数的解析式y=(k≠0),可得k=xy,然后分别代入P、Q点的坐标,可得:-2×(-3)=6≠3×(-2),故不在同一反比例函数的图像上;2×(-3)=-6≠2×3,故不正确同一反比例函数的图像上;2×3=6=(-4)×(-),在同一反比函数的图像上;-2×3≠(-3)×(-2),故不正确同一反比例函数的图像上.故选C.点睛:此题主要考查了反比例函数的图像与性质,解题关键是求出函数的系数k,比较k的值是否相同来得出是否在同一函数的图像上.2、C【分析】过O作OC⊥PB于C,根据直角三角形的性质得到OC=3,根据直线与圆的位置关系即可得到结论.【详解】解:过O作OC⊥PB于C,∵∠APB=30°,OP=6,∴OC=OP=3<3,∴半径为3的圆与PB的位置关系是相交,故选:C.【点睛】本题考查直线与圆的位置关系,掌握含30°角的直角三角形的性质是本题的解题关键.3、A【分析】已知圆O的半径为r,点P到圆心O的距离是d,①当r>d时,点P在⊙O内,②当r=d时,点P在⊙O上,③当r<d时,点P在⊙O外,根据以上内容判断即可.【详解】∵⊙O的半径为5,若PO=4,∴4<5,∴点P与⊙O的位置关系是点P在⊙O内,故选:A.【点睛】本题考查了点与圆的位置关系的应用,注意:已知圆O的半径为r,点P到圆心O的距离是d,①当r>d时,点P在⊙O内,②当r=d时,点P在⊙O上,③当r<d时,点P在⊙O外.4、D【分析】抛物线开口向上,对称轴为x=-1.根据三点横坐标离对称轴的距离远近来判断纵坐标的大小.【详解】解:由函数可知:该函数的抛物线开口向上,且对称轴为x=-1.∵、、在函数上的三个点,且三点的横坐标距离对称轴的远近为:、、∴.故选:D.【点睛】主要考查二次函数图象上点的坐标特征.也可求得的对称点,使三点在对称轴的同一侧.5、C【解析】试题分析:A、y=2(x-1)2-3,∵a=2>0,∴图象的开口向上,故本选项错误;B、当x=0时,y=2(0-1)2-3=-1,即图象和y轴的交点的纵坐标为-1,故本选项错误;C、∵对称轴是直线x=1,开口向上,∴当x<1时,y随x的增大而减少,故本选项正确;C、图象的对称轴是直线x=1,故本选项错误.故选:C.点睛:本题考查了二次函数的图象和性质的应用,主要考查学生的观察能力和理解能力,用了数形结合思想.6、D【分析】先把x=5代入方程得到关于m的方程,然后解此方程即可.【详解】解:把x=5代入方程得到25-3×5+m=0,
解得m=-1.
故选:D.【点睛】本题考查了一元二次方程的解:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.7、A【解析】六块矩形空地正好能拼成一个矩形,设道路的宽为xm,根据草坪的面积是570m1,即可列出方程:(31−1x)(10−x)=570,故选A.8、D【分析】根据增长率问题公式即可解决此题,二月为200(1+x),三月为200(1+x)2,三个月相加即得第一季度的营业额.【详解】解:∵一月份的营业额为200万元,平均每月增长率为x,∴二月份的营业额为200×(1+x),∴三月份的营业额为200×(1+x)×(1+x)=200×(1+x)2,∴可列方程为200+200×(1+x)+200×(1+x)2=1,即200[1+(1+x)+(1+x)2]=1.故选D.【点睛】此题考察增长率问题类一元二次方程的应用,注意:第一季度指一、二、三月的总和.9、A【分析】根据二次函数图象的对称轴位置以及开口方向,可得C(-5,y1)距对称轴的距离比D(5,y2)距对称轴的距离小,进而即可得到答案.【详解】∵抛物线y=ax2+bx+c(a<0)过A(-3,0),B(1,0),∴抛物线的对称轴是:直线x=-1,且开口向下,∵C(-5,y1)距对称轴的距离比D(5,y2)距对称轴的距离小,∴y1>y2,故选A.【点睛】本题主要考查二次函数的性质,掌握用抛物线的轴对称性比较二次函数值的大小,是解题的关键.10、C【详解】解:A、购买江苏省体育彩票“中奖”的概率是中奖的张数与发行的总张数的比值,故本项错误;B、国家级射击运动员射靶一次,正中靶心是随机事件,故本项错误;C、如果在若干次试验中一个事件发生的频率是,那么这个事件发生的概率一定也是,正确;D、如果车间生产的零件不合格的概率为,那么平均每检查1000个零件不一定会查到1个次品,故本项错误,故选C.【点睛】本题考查概率的意义,随机事件.11、A【解析】试题分析:S△AEF=AE×AF=,S△DEG=DG×DE=×1×(3﹣x)=,S五边形EFBCG=S正方形ABCD﹣S△AEF﹣S△DEG==,则y=4×()=,∵AE<AD,∴x<3,综上可得:(0<x<3).故选A.考点:动点问题的函数图象;动点型.12、A【分析】根据无理数的三种形式:①开方开不尽的数,②无限不循环小数,③含有π的数,结合选项进行判断即可.【详解】A、是无理数,故本选项正确;
B、=2,是有理数,故本选项错误;
C、0,是有理数,故本选项错误;
D、1,是有理数,故本选项错误;
故选:A.【点睛】本题考查了无理数的定义,属于基础题,掌握无理数的三种形式是解答本题的关键.二、填空题(每题4分,共24分)13、.【解析】根据一个角的余弦等于它余角的正弦,可得答案.【详解】解:由∠C=90°,若sinA=,得cosB=sinA=,故答案为.【点睛】本题考查了互余两角的三角函数,利用一个角的余弦等于它余角的正弦是解题关键.14、60π【分析】先利用勾股定理求出BC的长度,然后利用扇形的面积公式求解即可.【详解】解:∵它的底面半径OB=6cm,高OC=8cm.∴BC==10(cm),∴圆锥的侧面积是:(cm1).故答案为:60π.【点睛】本题主要考查勾股定理及扇形的面积公式,掌握勾股定理及扇形的面积公式是解题的关键.15、50°或210°【分析】首先根据题意作图,然后由∠BAC′=130°,∠BAC=80°,即可求得答案.【详解】解:∵∠BAC′=130°,∠BAC=80°,
∴如图1,∠CAC′=∠BAC′-∠BAC=50°,
如图2,∠CAC′=∠BAC′+∠BAC=210°.
∴旋转角等于50°或210°.
故答案为:50°或210°.【点睛】本题考查了旋转的性质.注意掌握数形结合思想与分类讨论思想的应用.16、【分析】根据菱形的性质,三角形中位线的性质以及勾股定理求出四边形各边长,得出规律求出即可.【详解】∵菱形ABCD中,边长为10,∠A=60°,设菱形对角线交于点O,∴,∴,,∴,,顺次连结菱形ABCD各边中点,
∴△AA1D1是等边三角形,四边形A2B2C2D2是菱形,
∴A1D1=AA1=AB=5,C1D1=AC=5,A2B2=C2D2=C2B2=A2D2=AB=5,∴四边形A2B2C2D2的周长是:5×4=20,
同理可得出:A3D3=5×,C3D3=C1D1=5,A5D5=5,C5D5=C3D3=5,∴四边形A2019B2019C2019D2019的周长是:故答案为:【点睛】本题主要考查了菱形的性质以及矩形的性质和中点四边形的性质等知识,根据已知得出边长变化规律是解题关键.17、16cm【解析】∵△ABC∽△A′B′C′,,∴C△ABC:C△A′B′C′=3:4,又∵C△ABC=12cm,∴C△A′B′C′=16cm.故答案为16.18、1<S<2【分析】将已知两点坐标代入二次函数解析式,得出c的值及a、b的关系式,代入S=a+b+c中消元,再根据对称轴的位置判断S的取值范围即可.【详解】解:将点(1,1)和(﹣1,1)分别代入抛物线解析式,得c=1,a=b﹣1,∴S=a+b+c=2b,由题设知,对称轴x=且,∴2b>1.又由b=a+1及a<1可知2b=2a+2<2.∴1<S<2.故答案为:1<S<2.【点睛】本题考查了二次函数图象上点的坐标特点,运用了消元法的思想,对称轴的性质,需要灵活运用这些性质解题.三、解答题(共78分)19、截去的小正方形的边长为2cm.【分析】由等量关系:矩形面积﹣四个全等的小正方形面积=矩形面积×80%,列方程即可求解【详解】设小正方形的边长为xcm,由题意得10×8﹣1x2=80%×10×8,80﹣1x2=61,1x2=16,x2=1.解得:x1=2,x2=﹣2,经检验x1=2符合题意,x2=﹣2不符合题意,舍去;所以x=2.答:截去的小正方形的边长为2cm.20、(1)姐姐用时秒,妹妹用时秒,所以不能同时到,姐姐先到;(2)姐姐后退米或妹妹前进3米【分析】(1)先求出姐姐和妹妹的速度关系,然后求出再次比赛时两人用的时间,从而得出结论;(2)2种方案,姐姐退后或者妹妹向前,要想同时到达终点,则比赛用时相等,根据这个关系列写等量关系式并求解.【详解】(1)∵姐姐到达终点是,妹妹距终点还有3米∴姐姐跑50米和妹妹跑47米的时间相同,设这个时间为:即:∴a=50k,b=47k则再次比赛,姐姐的时间为:=秒妹妹的时间为:秒∵,∴<,即姐姐用时短,姐姐先到达终点(2)情况一:姐姐退后x米,两人同时到达终点则:=,解得:x=情况二:妹妹向前y米,两人同时到达终点则:=,解得:y=3综上得:姐姐退后米或妹妹前进3米,两人同时到达终点【点睛】本题考查行程问题,解题关键是引入辅助元k,用于表示姐姐和妹妹的速度关系.21、(1)详见解析;(2)相似【分析】(1)利用坐标的变化规律得出答案;(2)根据所画的图形,利用对应点位置得到线段的长度,即可得到结论.【详解】解:(1)B′(
8,6
),C′(
10,2
),
如图所示:△A′B′C′即为所求;故答案为:8,6;10,2;(2)根据表格和所画的图形可知,,∴.【点睛】此题主要考查了位似变换,正确得出对应点位置是解题关键.22、(1)w=﹣2x2+240x﹣2200(50≤x≤80);(2)影院将电影票售价定为60元/张时,每天获利最大,最大利润是1元.【分析】(1)根据“每天利润=电影票张数×售价-每天运营成本”可得函数解析式;
(2)将(1)中所得函数解析式配方成顶点式,再利用二次函数的性质可得答案.【详解】解:(1)由题意:w=(﹣2x+240)•x﹣2200=﹣2x2+240x﹣2200(50≤x≤80).(2)w=﹣2x2+240x﹣2200=﹣2(x2﹣120x)﹣2200=﹣2(x﹣60)2+1.∵x是整数,50≤x≤80,∴当x=60时,w取得最大值,最大值为1.答:影院将电影票售价定为60元/张时,每天获利最大,最大利润是1元.【点睛】本题主要考查二次函数的应用,解题的关键是根据“每天利润=电影票张数×售价-每天运营成本”列出函数解析式并熟练运用二次函数的性质求出最值.23、(1)证明见解析;(2)作图见解析.【解析】首先证明四边形是平行四边形,再根据有一个角是直角的平行四边形是矩形即可判断.连接交于点,作射线即可.【详解】证明:分别是的中点,四边形是平行四边形,四边形是矩形连接交于点,作射线,射线即为所求.【点睛】本题考查三角形中位线定理,矩形的判定和性质,等边三角形的判定和性质等知识,解题的关键是熟练掌握基本知识.24、(1);(2)【分析】(1)由条件可知该方程的判别式大于或等于0,可得到关于m的不等式,可求得m的取值范围;
(2)利用根与系数的关系可用m表示出已知等式,可求得m的值.【详解】解:(1)原方程有两个实数根,整理,得:解得:(2),,即解得:又的值为.【点睛】本题考查了根据一元二次方程的根与判别式的关系来确定未知系数的取值范围,以及根据根与系数的关系来确定未知系数的值.25、(1)见解析;(2)7.1【分析】(1)由旋转可得DE=DM,∠EDM为直角,可得出∠EDF+∠MDF=90°,由∠EDF=41°,得到∠MD
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024饲料原料出口销售合同
- 职业学院学生资助工作实施办法
- 2024年建筑工程施工及安全责任保险合同范本3篇
- 2024年装修项目监理合同3篇
- 2025年度豪华大理石台面定制与安装服务合同范本3篇
- 2024年租房责任保险合同2篇
- 2024年股权转让合同(双边)
- 2024年简明钢结构购买合同
- 构造地质学看图题及答案
- 2025年度网络安全责任书协议书保障数据安全3篇
- FZ/T 81024-2022机织披风
- GB/T 24123-2009电容器用金属化薄膜
- 艾滋病梅毒乙肝实验室检测
- 国铁桥梁人行道支架制作及安装施工要点课件
- 领导科学全套精讲课件
- 粤教版地理七年级下册全册课件
- 小学科学苏教版六年级上册全册精华知识点(2022新版)
- 萎缩性胃炎共识解读
- 《中外资产评估准则》课件第8章 澳大利亚与新西兰资产评估准则
- 2022版义务教育语文课程标准(2022版含新增和修订部分)
- 精品金属线管布线施工工程施工方法
评论
0/150
提交评论