江苏省南京玄武区十三中学集团科利华2022-2023学年九年级数学第一学期期末复习检测试题含解析_第1页
江苏省南京玄武区十三中学集团科利华2022-2023学年九年级数学第一学期期末复习检测试题含解析_第2页
江苏省南京玄武区十三中学集团科利华2022-2023学年九年级数学第一学期期末复习检测试题含解析_第3页
江苏省南京玄武区十三中学集团科利华2022-2023学年九年级数学第一学期期末复习检测试题含解析_第4页
江苏省南京玄武区十三中学集团科利华2022-2023学年九年级数学第一学期期末复习检测试题含解析_第5页
已阅读5页,还剩17页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年九上数学期末模拟试卷注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题(每题4分,共48分)1.二次函数y=ax2+bx+c(a≠0)的图象如图所示,那么下列说法正确的是()A.a>0,b>0,c>0 B.a<0,b>0,c>0 C.a<0,b>0,c<0 D.a<0,b<0,c>02.由两个可以自由转动的转盘、每个转盘被分成如图所示的几个扇形、游戏者同时转动两个转盘,如果一个转盘转出了红色,另一转盘转出了蓝色,游戏者就配成了紫色下列说法正确的是()A.两个转盘转出蓝色的概率一样大B.如果A转盘转出了蓝色,那么B转盘转出蓝色的可能性变小了C.先转动A转盘再转动B转盘和同时转动两个转盘,游戏者配成紫色的概率不同D.游戏者配成紫色的概率为3.如图,在△ABC中,AD⊥BC,垂足为点D,若AC=,∠C=45°,tan∠ABC=3,则BD等于()A.2 B.3 C. D.4.如图,在中,,则的长度为A.1 B. C. D.5.关于x的方程有实数根,则k的取值范围是()A. B.且 C. D.且6.在△ABC中,若|sinA﹣|+(﹣cosB)2=0,则∠C的度数是()A.45° B.75° C.105° D.120°7.如图,二次函数()的图象交轴于点和点,交轴的负半轴于点,且,下列结论:①;②;③;④.其中正确的个数有()A.1 B.2 C.3 D.48.下列四对图形中,是相似图形的是()A.任意两个三角形 B.任意两个等腰三角形C.任意两个直角三角形 D.任意两个等边三角形9.下列事件中是不可能事件的是()A.三角形内角和小于180° B.两实数之和为正C.买体育彩票中奖 D.抛一枚硬币2次都正面朝上10.要使根式有意义,x的取值范围是()A.x≠0 B.x≠1 C. D.11.正方形的边长为4,若边长增加x,那么面积增加y,则y关于x的函数表达式为()A. B. C. D.12.一个盒子里装有若干个红球和白球,每个球除颜色以外都相同.5位同学进行摸球游戏,每位同学摸10次(摸出1球后放回,摇匀后再继续摸),其中摸到红球数依次为8,5,9,7,6,则估计盒中红球和白球的个数是()A.红球比白球多 B.白球比红球多 C.红球,白球一样多 D.无法估计二、填空题(每题4分,共24分)13.三角形的两边长分别是3和4,第三边长是方程x2﹣13x+40=0的根,则该三角形的周长为.14.如图,在反比例函数的图象上有点它们的横坐标依次为2,4,6,8,10,分别过这些点作轴与轴的垂线,图中所构成的阴影部分的面积从左到右依次为则点的坐标为________,阴影部分的面积________.15.如图,是⊙的直径,是⊙上一点,的平分线交⊙于,且,则的长为_________.16.如图、正比例函数与反比例函数的图象交于(1,2),则在第一象限内不等式的解集为_____________.17.现有6张正面分别标有数字的不透明卡片,这些卡片除数字不同外其余全部相同现将它们背面朝上,洗均匀后从中任取一张,将该卡片上的数字记为,则使得关于的一元二次方程有实数根的概率为____.18.如图,P是等边△ABC内的一点,若将△PAC绕点A按逆时针方向旋转到△P'AB,则∠PAP'=_____.三、解答题(共78分)19.(8分)如图,△ABC中(1)请你利用无刻度的直尺和圆规在平面内画出满足PB2+PC2=BC2的所有点P构成的图形,并在所作图形上用尺规确定到边AC、BC距离相等的点P.(作图必须保留作图痕迹)(2)在(1)的条件下,连接BP,若BC=15,AC=14,AB=13,求BP的长.20.(8分)如图,在平面直角坐标系中,矩形的顶点在轴上,在轴上,把矩形沿对角线所在的直线对折,点恰好落在反比例函数的图象上点处,与轴交于点,延长交轴于点,点刚好是的中点.已知的坐标为.(1)求反比例函数的函数表达式;(2)若是反比例函数图象上的一点,点在轴上,若以为顶点的四边形是平行四边形,请直接写出点的坐标_________.21.(8分)解方程:(1)用公式法解方程:3x2﹣x﹣4=1(2)用配方法解方程:x2﹣4x﹣5=1.22.(10分)(1)计算:(π﹣3)0+(﹣1)﹣3﹣3×tan30°+;(2)解一元二次方程:3x2=5x﹣223.(10分)如图,正方形ABCD的过长是3,BP=CQ,连接AQ,DP交于点O,并分别与边CD、BC交于点F、E,连接AE.(1)求证:AQ⊥DP;(2)求证:AO2=OD•OP;(3)当BP=1时,求QO的长度.24.(10分)八年级一班开展了“读一本好书”的活动,班委会对学生阅读书籍的情况进行了问卷调查,问卷设置了“小说”“戏剧”“散文”“其他”四个类型,每位同学仅选一项,根据调查结果绘制了不完整的频数分布表和扇形统计图.类别频数(人数)频率小说0.5戏剧4散文100.25其他6合计1根据图表提供的信息,解答下列问题:(1)八年级一班有多少名学生?(2)请补全频数分布表,并求出扇形统计图中“其他”类所占的百分比;(3)在调查问卷中,甲、乙、丙、丁四位同学选择了“戏剧”类,现从以上四位同学中任意选出2名同学参加学校的戏剧兴趣小组,请用画树状图或列表法的方法,求选取的2人恰好是乙和丙的概率.25.(12分)为进一步发展基础教育,自年以来,某县加大了教育经费的投入,年该县投入教育经费万元.年投入教育经费万元.假设该县这两年投入教育经费的年平均增长率相同.求这两年该县投入教育经费的年平均增长率.26.如图,已知直线y=-2x+3与抛物线y=x2相交于A,B两点,O为坐标原点.(1)求点A和B的坐标;(2)连结OA,OB,求△OAB的面积.

参考答案一、选择题(每题4分,共48分)1、B【分析】利用抛物线开口方向确定a的符号,利用对称轴方程可确定b的符号,利用抛物线与y轴的交点位置可确定c的符号.【详解】∵抛物线开口向下,∴a<0,∵抛物线的对称轴在y轴的右侧,∴x=﹣>0,∴b>0,∵抛物线与y轴的交点在x轴上方,∴c>0,故选B.【点睛】本题考查了二次函数图象与系数的关系:对于二次函数y=ax2+bx+c(a≠0),二次项系数a决定抛物线的开口方向和大小:当a>0时,抛物线向上开口;当a<0时,抛物线向下开口;一次项系数b和二次项系数a共同决定对称轴的位置:当a与b同号时(即ab>0),对称轴在y轴左;当a与b异号时(即ab<0),对称轴在y轴右;常数项c决定抛物线与y轴交点位置:抛物线与y轴交于(0,c);抛物线与x轴交点个数由△决定:△=b2﹣4ac>0时,抛物线与x轴有2个交点;△=b2﹣4ac=0时,抛物线与x轴有1个交点;△=b2﹣4ac<0时,抛物线与x轴没有交点.2、D【解析】A、A盘转出蓝色的概率为、B盘转出蓝色的概率为,此选项错误;B、如果A转盘转出了蓝色,那么B转盘转出蓝色的可能性不变,此选项错误;C、由于A、B两个转盘是相互独立的,先转动A转盘再转动B转盘和同时转动两个转盘,游戏者配成紫色的概率相同,此选项错误;D、画树状图如下:由于共有6种等可能结果,而出现红色和蓝色的只有1种,所以游戏者配成紫色的概率为,故选D.3、A【解析】根据三角函数定义可得AD=AC•sin45°,从而可得AD的长,再利用正切定义可得BD的长.【详解】∵AC=6,∠C=45°∴AD=AC⋅sin45°=6×=6,∵tan∠ABC=3,∴=3,∴BD==2,故选A.【点睛】本题主要考查解直角三角形,三角函数的知识,熟记知识点是解题的关键.4、C【分析】根据已知条件得到,根据相似三角形的判定和性质可得,即可得到结论.【详解】解:∵,

∴,

∵DE∥BC,

∴△ADE∽△ABC,,∴,∴BC=4.故选:C.【点睛】本题考查了相似三角形的判定与性质,熟悉相似基本图形掌握相似三角形的判定与性质是解题关键.5、C【分析】关于x的方程可以是一元一次方程,也可以是一元二次方程;当方程为一元一次方程时,k=1;是一元二次方程时,必须满足下列条件:(1)二次项系数不为零;(2)在有实数根下必须满足△=b2-4ac≥1.【详解】当k=1时,方程为3x-1=1,有实数根,当k≠1时,△=b2-4ac=32-4×k×(-1)=9+4k≥1,解得k≥-.综上可知,当k≥-时,方程有实数根;故选C.【点睛】本题考查了方程有实数根的含义,一元二次方程根的判别式的应用.切记不要忽略一元二次方程二次项系数不为零这一隐含条件.注意到分两种情况讨论是解题的关键.6、C【解析】根据非负数的性质列出关系式,根据特殊角的三角函数值求出∠A、∠B的度数,根据三角形内角和定理计算即可.【详解】由题意得,sinA-=0,-cosB=0,即sinA=,=cosB,解得,∠A=30°,∠B=45°,∴∠C=180°-∠A-∠B=105°,故选C.【点睛】本题考查的是非负数的性质的应用、特殊角的三角函数值的计算和三角形内角和定理的应用,熟记特殊角的三角函数值是解题的关键.7、D【分析】先根据图像,判断出a、b、c的符号,即可判断①;先求出点C的坐标,结合已知条件即可求出点A的坐标,根据根与系数的关系即可判断②;将点A的坐标代入解析式中,即可判断③;将点B的坐标和代入解析式中,即可判断④.【详解】解:由图像可知:抛物线的开口向上∴a>0对称轴在y轴右侧∴a、b异号,即b<0∴a-b>0抛物线与y轴交于负半轴∴c<0∴,①正确;将x=0代入中,解得y=c∴点C的坐标为(0,c)∵∴点A的坐标为(c,0)∵抛物线交轴于点和点∴x=c和x=2是方程的两个根根据根与系数的关系:2c=解得:,故②正确;将点A的坐标代入中,可得:将等式的两边同时除以c,得:,故③正确;将点B的坐标和代入中,可得:解得:,故④正确.故选:D.【点睛】此题考查的是根据二次函数的图像,判断系数或式子的值或符号,掌握二次函数的图像及性质与各项系数的关系是解决此题的关键.8、D【分析】根据相似图形的定义知,相似图形的形状相同,但大小不一定相同,对题中条件一一分析,排除错误答案.【详解】解:A、任意两个三角形,形状不确定,不一定是相似图形,故A错误;B、任意两个等腰三角形,形状不确定,不一定是相似图形,故B错误;C、任意两个直角三角形,直角边的长度不确定,不一定是相似图形,故C错误;D、任意两个等边三角形,形状相同,但大小不一定相同,符合相似形的定义,故D正确;故选:D.【点睛】本题考查的是相似形的识别,关键要联系实际,根据相似图形的定义得出.9、A【解析】根据三角形的内角和定理,可知:“三角形内角和等于180°”,故是不可能事件;根据实数的加法,可知两实数之和可能为正,可能是0,可能为负,故是可能事件;根据买彩票可能中奖,故可知是可能事件;根据硬币的特点,抛一枚硬币2次有可能两次都正面朝上,故是可能事件.故选A.10、D【分析】根据二次根式的性质,被开方数大于或等于0,可知当x-1≥0时,二次根式有意义.【详解】要使有意义,只需x-1≥0,解得x≥1.故选D.【点睛】本题考查二次根式定义中被开方数的取值范围.二次根式定义中要求被开方数是非负数,经常出现的问题是有的同学误认为是被开方数中的x是非负数,如中x的取值范围写为x≥0,因此学习二次根式时需特别注意.11、C【分析】加的面积=新正方形的面积-原正方形的面积,把相关数值代入化简即可.【详解】解:∵新正方形的边长为x+4,原正方形的边长为4,∴新正方形的面积为(x+4)2,原正方形的面积为16,∴y=(x+4)2-16=x2+8x,故选:C.【点睛】本题考查列二次函数关系式;得到增加的面积的等量关系是解决本题的关键.12、A【解析】根据题意可得5位同学摸到红球的频率为,由此可得盒子里的红球比白球多.故选A.二、填空题(每题4分,共24分)13、1.【解析】试题分析:解方程x2-13x+40=0,(x-5)(x-8)=0,∴x1=5,x2=8,∵3+4=7<8,∴x=5.∴周长为3+4+5=1.故答案为1.考点:1一元二次方程;2三角形.14、(2,10)16【分析】将点P1的横坐标2代入函数表达式即可求出点P1纵坐标,将右边三个矩形平移,如图所示,可得出所求阴影部分面积之和等于矩形ABCP1的面积,求出即可.【详解】解:因为点P1的横坐标为2,代入,得y=10,∴点P1的坐标为(2,10),将右边三个矩形平移,如图所示,

把x=10代入反比例函数解析式得:y=2,∴由题意得:P1C=AB=10-2=8,

则S1+S2+S3+S4=S矩形ABCP1=2×8=16,

故答案为:(2,10),16.【点睛】此题考查了反比例函数k的几何意义,以及反比例函数图象上点的坐标特征,熟练掌握反比例函数k的几何意义是解本题的关键.15、【分析】连接OD,由AB是直径,得∠ACB=90°,由角平分线的性质和圆周角定理,得到△AOD是等腰直角三角形,根据勾股定理,即可求出AD的长度.【详解】解:连接OD,如图,∵是⊙的直径,∴∠ACB=90°,AO=DO=,∵CD平分∠ACB,∴∠ACD=45°,∴∠AOD=90°,∴△AOD是等腰直角三角形,∴;故答案为:.【点睛】本题考查了圆周角定理,直径所对的圆周角是直角,勾股定理,以及等腰直角三角形的性质,解题的关键是掌握圆周角定理进行解题.16、x>1【分析】在第一象限内不等式k1x>的解集就是正比例函数图象都在反比例函数图象上方,即有y1>y2时x的取值范围.【详解】根据图象可得:第一象限内不等式k1x>

的解集为x>1.

故答案是:x>1.【点睛】此题考查反比例函数与一次函数的交点问题,待定系数法求函数解析式,解题关键在于掌握反比例函数与一次函数图象的交点坐标满足两函数解析式.17、【分析】先由一元二次方程x2-2x+a-2=0有实数根,得出a的取值范围,最后根据概率公式进行计算即可.【详解】解:∵一元二次方程x2-2x+a-2=0有实数根,

∴4-4(a-2)≥0,

∴a≤1,

∴a=-1,0,1,2,1.∴使得关于x的一元二次方程x2-2x+a-2=0有实数根概率为:.【点睛】考查概率的求法;用到的知识点为:概率=所求情况数与总情况数之比.得到使一元二次方程x2-2x+a-2=0有实数根情况数是解决本题的关键.18、60°【解析】试题分析:根据旋转图形的性质可得:∠PAP′=∠BAC=60°.考点:旋转图形的性质三、解答题(共78分)19、(1)见解析;(2)BP=【分析】(1)根据PB2+PC2=BC2得出P点所构成的圆以BC为直径,根据垂直平分线画法画出O点,补全⊙O,再作∠ACB的角平分线与⊙O的交点即是P点.(2)设⊙O与AC的交点为H,AH=x,得到AH、BH,根据题意求出OP∥AC,即可得出OP⊥BH,BQ=BH,OQ=CH,求出PQ,根据勾股定理求出BP.【详解】(1)如图:(2)由(1)作图,设⊙O与AC的交点为H,连接BH,∴∠BHC=90°∵BC=15,AC=14,AB=13设AH=x∴HC=14-x∴解得:x=5∴AH=5∴BH=12.连接OP,由(1)作图知CP平分∠BCA∴∠PCA=∠BCP又∵OP=OC∴∠OPC=∠BCP∴∠OPC=∠PCA∴OP∥CA∴OP⊥BH与点Q∴BQ=BH=6又BO=∴OQ=∴PQ=∴BP=.【点睛】此题主要考查了尺规作图中垂直平分线,角平分线及圆的画法和相似比及勾股定理等知识,解题的关键是构建直角三角形及找到关键相似三角形.20、(1);(2),,(,0).【分析】(1)证得BD是CF的垂直平分线,求得,作DG⊥BF于G,求得点D的坐标为,从而求得反比例函数的解析式;(2)分3种情形,分别画出图形即可解决问题.【详解】(1)∵四边形ABOC是矩形,∴AB=OC,AC=OB,,根据对折的性质知,,∴,,AB=DB,又∵D是CF的中点,∴BD是CF的垂直平分线,∴BC=BF,,∴,∵,∴,∵点B的坐标为,∴,在中,,,,∴,过D作DG⊥BF于G,如图,在中,,,,∴,,∴,∴点D的坐标为,代入反比例函数的解析式得:,∴反比例函数的解析式;(2)如图①、②中,作EQ∥x轴交反比例函数的图象于点Q,在中,,,∴,∴点E的坐标为,点Q纵坐标与点E纵坐标都是,代入反比例函数的解析式得:,解得:,∴点Q的坐标为,∴,∵四点构成平行四边形,∴∴点的坐标分别为,;如图③中,构成平行四边形,作QM∥y轴交轴于点M,∵四边形为平行四边形,∴,,∴,∴,,∴点的坐标为,∴∴,∴点的坐标为,综上,符合条件点的坐标有:,,;【点睛】本题考查反比例函数综合题、矩形的性质、翻折变换、直角三角形中30度角的性质、平行四边形的判定和性质、解直角三角形等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,学会用分类讨论的思想思考问题.21、(1)x1=,x2=-1;(2)x1=5,x2=-1.【分析】(1)根据一元二次方程的一般形式得出a、b、c的值,利用公式法x=即可得答案;(2)先把常数项移项,再把方程两边同时加上一次项系数一半的平方,即可得完全平方式,直接开平方即可得答案.【详解】(1)3x2﹣x﹣4=1∵a=3,b=-1,c=-4,∴∴x1=,x1=-1.(2)x2﹣4x﹣5=1x2﹣4x+4=5+4(x﹣2)2=9∴x-2=3或x-2=-3∴x1=5,x2=-1.【点睛】本题考查解一元二次方程,一元二次方程的常用解法有:配方法、直接开平方法、公式法、因式分解法等,熟练掌握并灵活运用适当的方法是解题关键.22、(1)﹣3+2;(2)=1,=.【分析】(1)根据实数的混合运算顺序和运算法则计算可得;(2)利用因式分解法解一元二次方程即可.【详解】解:(1)原式=1﹣1﹣3﹣3×+3=﹣3﹣+3=﹣3+;(2)∵3x2﹣5x+2=0,∴(x﹣1)(3x﹣2)=0,则x﹣1=0或3x﹣2=0,解得=1,=.【点睛】本题主要考查实数的混合运算及解一元二次方程,掌握实数的混合运算顺序和法则,因式分解法是解题的关键.23、(1)详见解析;(2)详见解析;(3)QO=.【分析】(1)由四边形ABCD是正方形,得到AD=BC,∠DAB=∠ABC=90°,根据全等三角形的性质得到∠P=∠Q,根据余角的性质得到AQ⊥DP.(2)根据相似三角形的性质得到AO2=OD•OP(3根据相似三角形的性质得到BE=,求得QE=,由△QOE∽△PAD,可得,解决问题.【详解】(1)证明:∵四边形ABCD是正方形,∴AD=BC,∠DAB=∠ABC=90°,∵BP=CQ,∴AP=BQ,在△DAP与△ABQ中,,∴△DAP≌△ABQ,∴∠P=∠Q,∵∠Q+∠QAB=90°,∴∠P+∠QAB=90°,∴∠AOP=90°,∴AQ⊥DP;(2)证明:∵∠DOA=∠AOP=90°,∠ADO+∠P=∠ADO+∠DAO=90°,∴∠DAO=∠P,∴△DAO∽△APO,∴,∴AO2=OD•OP.(3)解:∵BP=1,AB=3,∴AP=4,∵△PBE∽△PAD,∴,∴BE=,∴QE=,∵△QOE∽△PAD,∴=∴QO=.【点睛】本题属于相似形综合题,考查了相似三角形的判定和性质,全等三角形的判定和性质,正方形的性质,三角函数的定义,熟练掌握全等三角形或相似三角形的判定和性质是解题的关

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论