


版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
四川省雅安市雨城区雅安中学2023学年中考五模数学测试卷注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1.如图,在△ABC中,AB=5,AC=4,∠A=60°,若边AC的垂直平分线DE交AB于点D,连接CD,则△BDC的周长为()A.8 B.9 C.5+ D.5+2.如图,一个斜坡长130m,坡顶离水平地面的距离为50m,那么这个斜坡的坡度为(
)A. B. C. D.3.如图,点A、B、C、D在⊙O上,∠AOC=120°,点B是弧AC的中点,则∠D的度数是()A.60° B.35° C.30.5° D.30°4.如图,在Rt△ABC中,∠BAC=90°,AB=AC,AD⊥BC,垂足为D、E,F分别是CD,AD上的点,且CE=AF.如果∠AED=62°,那么∠DBF的度数为()A.62° B.38° C.28° D.26°5.如果一个正多边形内角和等于1080°,那么这个正多边形的每一个外角等于()A. B. C. D.6.如图,函数y=﹣2x+2的图象分别与x轴,y轴交于A,B两点,点C在第一象限,AC⊥AB,且AC=AB,则点C的坐标为()A.(2,1) B.(1,2) C.(1,3) D.(3,1)7.如图,直立于地面上的电线杆AB,在阳光下落在水平地面和坡面上的影子分别是BC、CD,测得BC=6米,CD=4米,∠BCD=150°,在D处测得电线杆顶端A的仰角为30°,则电线杆AB的高度为()A. B. C. D.8.如图,已知AB和CD是⊙O的两条等弦.OM⊥AB,ON⊥CD,垂足分别为点M、N,BA、DC的延长线交于点P,联结OP.下列四个说法中:①;②OM=ON;③PA=PC;④∠BPO=∠DPO,正确的个数是()A.1 B.2 C.3 D.49.2017年“智慧天津”建设成效显著,互联网出口带宽达到17200吉比特每秒.将17200用科学记数法表示应为()A.172×102 B.17.2×103 C.1.72×104 D.0.172×10510.某几何体由若干个大小相同的小正方体搭成,其主视图与左视图如图所示,则搭成这个几何体的小正方体最少有()A.4个 B.5个 C.6个 D.7个二、填空题(共7小题,每小题3分,满分21分)11.两个反比例函数y=kx和y=1x在第一象限内的图象如图所示,点P在y=kx的图象上,PC⊥x轴于点C,交12.如图,△OAC和△BAD都是等腰直角三角形,∠ACO=∠ADB=90°,反比例函数y=在第一象限的图象经过点B,则△OAC与△BAD的面积之差S△OAC﹣S△BAD为_______.13.已知,大正方形的边长为4厘米,小正方形的边长为2厘米,起始状态如图所示,大正方形固定不动,把小正方形向右平移,当两个正方形重叠部分的面积为2平方厘米时,小正方形平移的距离为_____厘米.14.已知,那么__.15.如图,在正五边形ABCDE中,AC与BE相交于点F,则∠AFE的度数为_____.16.如图,在正方形ABCD中,AD=5,点E,F是正方形ABCD内的两点,且AE=FC=3,BE=DF=4,则EF的长为__________.17.廊桥是我国古老的文化遗产.如图,是某座抛物线型的廊桥示意图,已知抛物线的函数表达式为y=-140x三、解答题(共7小题,满分69分)18.(10分)在四张编号为A,B,C,D的卡片(除编号外,其余完全相同)的正面分别写上如图所示的正整数后,背面向上,洗匀放好.(1)我们知道,满足a2+b2=c2的三个正整数a,b,c成为勾股数,嘉嘉从中随机抽取一张,求抽到的卡片上的数是勾股数的概率P1;(2)琪琪从中随机抽取一张(不放回),再从剩下的卡片中随机抽取一张(卡片用A,B,C,D表示).请用列表或画树形图的方法求抽到的两张卡片上的数都是勾股数的概率P2,并指出她与嘉嘉抽到勾股数的可能性一样吗?19.(5分)如图,∠BAO=90°,AB=8,动点P在射线AO上,以PA为半径的半圆P交射线AO于另一点C,CD∥BP交半圆P于另一点D,BE∥AO交射线PD于点E,EF⊥AO于点F,连接BD,设AP=m.(1)求证:∠BDP=90°.(2)若m=4,求BE的长.(3)在点P的整个运动过程中.①当AF=3CF时,求出所有符合条件的m的值.②当tan∠DBE=时,直接写出△CDP与△BDP面积比.20.(8分)有一项工程,若甲队单独做,恰好在规定日期完成,若乙队单独做要超过规定日期3天完成;现在先由甲、乙两队合做2天后,剩下的工程再由乙队单独做,也刚好在规定日期完成,问规定日期多少天?21.(10分)某厂按用户的月需求量(件)完成一种产品的生产,其中.每件的售价为18万元,每件的成本(万元)是基础价与浮动价的和,其中基础价保持不变,浮动价与月需求量(件)成反比.经市场调研发现,月需求量与月份(为整数,)符合关系式(为常数),且得到了表中的数据.月份(月)
1
2
成本(万元/件)
11
12
需求量(件/月)
120
100
(1)求与满足的关系式,请说明一件产品的利润能否是12万元;(2)求,并推断是否存在某个月既无盈利也不亏损;(3)在这一年12个月中,若第个月和第个月的利润相差最大,求.22.(10分)有四张正面分别标有数字﹣1,0,1,2的不透明卡片,它们除数字外其余全部相同,现将它们背面朝上洗均匀.随机抽取一张卡片,求抽到数字“﹣1”的概率;随机抽取一张卡片,然后不放回,再随机抽取一张卡片,请用列表或画树状图的方法求出第一次抽到数字“2”且第二次抽到数字“0”的概率.23.(12分)如图,在平面直角坐标系xOy中,△ABC的三个顶点坐标分别为A(1,1),B(4,0),C(4,4).按下列要求作图:①将△ABC向左平移4个单位,得到△A1B1C1;②将△A1B1C1绕点B1逆时针旋转90°,得到△A1B1C1.求点C1在旋转过程中所经过的路径长.24.(14分)某商店经营儿童益智玩具,已知成批购进时的单价是20元.调查发现:销售单价是30元时,月销售量是230件,而销售单价每上涨1元,月销售量就减少10件,但每件玩具售价不能高于40元.设每件玩具的销售单价上涨了x元时(x为正整数),月销售利润为y元.求y与x的函数关系式并直接写出自变量x的取值范围.每件玩具的售价定为多少元时,月销售利润恰为2520元?每件玩具的售价定为多少元时可使月销售利润最大?最大的月利润是多少?
2023学年模拟测试卷参考答案(含详细解析)一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1、C【答案解析】
过点C作CM⊥AB,垂足为M,根据勾股定理求出BC的长,再根据DE是线段AC的垂直平分线可得△ADC等边三角形,则CD=AD=AC=4,代入数值计算即可.【题目详解】过点C作CM⊥AB,垂足为M,在Rt△AMC中,∵∠A=60°,AC=4,∴AM=2,MC=2,∴BM=AB-AM=3,在Rt△BMC中,BC===,∵DE是线段AC的垂直平分线,∴AD=DC,∵∠A=60°,∴△ADC等边三角形,∴CD=AD=AC=4,∴△BDC的周长=DB+DC+BC=AD+DB+BC=AB+BC=5+.故答案选C.【答案点睛】本题考查了勾股定理,解题的关键是熟练的掌握勾股定理的运算.2、A【答案解析】测试卷解析:∵一个斜坡长130m,坡顶离水平地面的距离为50m,∴这个斜坡的水平距离为:=10m,∴这个斜坡的坡度为:50:10=5:1.故选A.点睛:本题考查解直角三角形的应用-坡度坡角问题,解题的关键是明确坡度的定义.坡度是坡面的铅直高度h和水平宽度l的比,又叫做坡比,它是一个比值,反映了斜坡的陡峭程度,一般用i表示,常写成i=1:m的形式.3、D【答案解析】
根据圆心角、弧、弦的关系定理得到∠AOB=∠AOC,再根据圆周角定理即可解答.【题目详解】连接OB,∵点B是弧的中点,∴∠AOB=∠AOC=60°,由圆周角定理得,∠D=∠AOB=30°,故选D.【答案点睛】此题考查了圆心角、弧、弦的关系定理,解题关键在于利用好圆周角定理.4、C【答案解析】分析:主要考查:等腰三角形的三线合一,直角三角形的性质.注意:根据斜边和直角边对应相等可以证明△BDF≌△ADE.详解:∵AB=AC,AD⊥BC,∴BD=CD.又∵∠BAC=90°,∴BD=AD=CD.又∵CE=AF,∴DF=DE,∴Rt△BDF≌Rt△ADE(SAS),∴∠DBF=∠DAE=90°﹣62°=28°.故选C.点睛:熟练运用等腰直角三角形三线合一性质、直角三角形斜边上的中线等于斜边的一半是解答本题的关键.5、A【答案解析】
首先设此多边形为n边形,根据题意得:180(n-2)=1080,即可求得n=8,再由多边形的外角和等于360°,即可求得答案.【题目详解】设此多边形为n边形,根据题意得:180(n-2)=1080,解得:n=8,∴这个正多边形的每一个外角等于:360°÷8=45°.故选A.【答案点睛】此题考查了多边形的内角和与外角和的知识.注意掌握多边形内角和定理:(n-2)•180°,外角和等于360°.6、D【答案解析】
过点C作CD⊥x轴与D,如图,先利用一次函数图像上点的坐标特征确定B(0,2),A(1,0),再证明△ABO≌△CAD,得到AD=OB=2,CD=AO=1,则C点坐标可求.【题目详解】如图,过点C作CD⊥x轴与D.∵函数y=﹣2x+2的图象分别与x轴,y轴交于A,B两点,∴当x=0时,y=2,则B(0,2);当y=0时,x=1,则A(1,0).∵AC⊥AB,AC=AB,∴∠BAO+∠CAD=90°,∴∠ABO=∠CAD.在△ABO和△CAD中,∠AOB=【答案点睛】本题主要考查一次函数的基本概念。角角边定理、全等三角形的性质以及一次函数的应用,熟练掌握相关知识点是解答的关键.7、B【答案解析】
延长AD交BC的延长线于E,作DF⊥BE于F,∵∠BCD=150°,∴∠DCF=30°,又CD=4,∴DF=2,CF==2,由题意得∠E=30°,∴EF=,∴BE=BC+CF+EF=6+4,∴AB=BE×tanE=(6+4)×=(2+4)米,即电线杆的高度为(2+4)米.点睛:本题考查的是解直角三角形的应用-仰角俯角问题,掌握仰角俯角的概念、熟记锐角三角函数的定义是解题的关键.8、D【答案解析】如图连接OB、OD;∵AB=CD,∴=,故①正确∵OM⊥AB,ON⊥CD,∴AM=MB,CN=ND,∴BM=DN,∵OB=OD,∴Rt△OMB≌Rt△OND,∴OM=ON,故②正确,∵OP=OP,∴Rt△OPM≌Rt△OPN,∴PM=PN,∠OPB=∠OPD,故④正确,∵AM=CN,∴PA=PC,故③正确,故选D.9、C【答案解析】
科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【题目详解】解:将17200用科学记数法表示为1.72×1.
故选C.【答案点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.10、B【答案解析】
由主视图和左视图确定俯视图的形状,再判断最少的正方体的个数.【题目详解】由主视图和左视图可确定所需正方体个数最少时俯视图(数字为该位置小正方体的个数)为:则搭成这个几何体的小正方体最少有5个,故选B.【答案点睛】本题考查了由三视图判断几何体,根据主视图和左视图画出所需正方体个数最少的俯视图是关键.【题目详解】请在此输入详解!【答案点睛】请在此输入点睛!二、填空题(共7小题,每小题3分,满分21分)11、①②④.【答案解析】①△ODB与△OCA的面积相等;正确,由于A、B在同一反比例函数图象上,则两三角形面积相等,都为12②四边形PAOB的面积不会发生变化;正确,由于矩形OCPD、三角形ODB、三角形OCA为定值,则四边形PAOB的面积不会发生变化.③PA与PB始终相等;错误,不一定,只有当四边形OCPD为正方形时满足PA=PB.④当点A是PC的中点时,点B一定是PD的中点.正确,当点A是PC的中点时,k=2,则此时点B也一定是PD的中点.故一定正确的是①②④12、【答案解析】
设△OAC和△BAD的直角边长分别为a、b,结合等腰直角三角形的性质及图像可得出B的坐标,根据三角形的面积公式结合反比例函数系数k的几何意义即可求解.【题目详解】设△OAC和△BAD的直角边长分别为a、b,则B点坐标为(a+b,a-b)∵点B在反比例函数y=在第一象限的图象上,∴(a+b)(a-b)=a2-b2=3∴S△OAC﹣S△BAD=a2-b2=【答案点睛】此题主要考查等腰直角三角形的面积求法和反比例函数k值的定义,解题的关键是熟知等腰直角三角形的性质及反比例函数k值的性质.13、1或5.【答案解析】
小正方形的高不变,根据面积即可求出小正方形平移的距离.【题目详解】解:当两个正方形重叠部分的面积为2平方厘米时,重叠部分宽为2÷2=1,①如图,小正方形平移距离为1厘米;②如图,小正方形平移距离为4+1=5厘米.故答案为1或5,【答案点睛】此题考查了平移的性质,要明确,平移前后图形的形状和面积不变.画出图形即可直观解答.14、【答案解析】
根据比例的性质,设x=5a,则y=2a,代入原式即可求解.【题目详解】解:∵,∴设x=5a,则y=2a,那么.故答案为:.【答案点睛】本题主要考查了比例的性质,根据比例式用同一个未知数得出的值进而求解是解题关键.15、72°【答案解析】
首先根据正五边形的性质得到AB=BC=AE,∠ABC=∠BAE=108°,然后利用三角形内角和定理得∠BAC=∠BCA=∠ABE=∠AEB=(180°−108°)÷2=36°,最后利用三角形的外角的性质得到∠AFE=∠BAC+∠ABE=72°.【题目详解】∵五边形ABCDE为正五边形,∴AB=BC=AE,∠ABC=∠BAE=108°,∴∠BAC=∠BCA=∠ABE=∠AEB=(180°−108°)÷2=36°,∴∠AFE=∠BAC+∠ABE=72°,故答案为72°.【答案点睛】本题考查的是正多边形和圆,利用数形结合求解是解答此题的关键16、【答案解析】分析:延长AE交DF于G,再根据全等三角形的判定得出△AGD与△ABE全等,得出AG=BE=4,由AE=3,得出EG=1,同理得出GF=1,再根据勾股定理得出EF的长.详解:延长AE交DF于G,如图,∵AB=5,AE=3,BE=4,∴△ABE是直角三角形,同理可得△DFC是直角三角形,可得△AGD是直角三角形,∴∠ABE+∠BAE=∠DAE+∠BAE,∴∠GAD=∠EBA,同理可得:∠ADG=∠BAE.在△AGD和△BAE中,∵,∴△AGD≌△BAE(ASA),∴AG=BE=4,DG=AE=3,∴EG=4﹣3=1,同理可得:GF=1,∴EF=.故答案为.点睛:本题考查了正方形的性质,关键是根据全等三角形的判定和性质得出EG=FG=1,再利用勾股定理计算.17、85【答案解析】由于两盏E、F距离水面都是8m,因而两盏景观灯之间的水平距离就是直线y=8与抛物线两交点的横坐标差的绝对值.故有-1即x2=80,x1所以两盏警示灯之间的水平距离为:|三、解答题(共7小题,满分69分)18、(1);(2)淇淇与嘉嘉抽到勾股数的可能性不一样.【答案解析】测试卷分析:(1)根据等可能事件的概率的定义,分别确定总的可能性和是勾股数的情况的个数;(2)用列表法列举出所有的情况和两张卡片上的数都是勾股数的情况即可.测试卷解析:(1)嘉嘉随机抽取一张卡片共出现4种等可能结果,其中抽到的卡片上的数是勾股数的结果有3种,所以嘉嘉抽取一张卡片上的数是勾股数的概率P1=;(2)列表法:ABCDA(A,B)(A,C)(A,D)B(B,A)(B,C)(B,D)C(C,A)(C,B)(C,D)D(D,A)(D,B)(D,C)由列表可知,两次抽取卡片的所有可能出现的结果有12种,其中抽到的两张卡片上的数都是勾股数的有6种,∴P2=,∵P1=,P2=,P1≠P2∴淇淇与嘉嘉抽到勾股数的可能性不一样.19、(1)详见解析;(2)的长为1;(3)m的值为或;与面积比为或.【答案解析】
由知,再由知、,据此可得,证≌即可得;
易知四边形ABEF是矩形,设,可得,证≌得,在中,由,列方程求解可得答案;
分点C在AF的左侧和右侧两种情况求解:左侧时由知、、,在中,由可得关于m的方程,解之可得;右侧时,由知、、,利用勾股定理求解可得.作于点G,延长GD交BE于点H,由≌知,据此可得,再分点D在矩形内部和外部的情况求解可得.【题目详解】如图1,,,,、,,,≌,.,,,,,四边形ABEF是矩形,设,则,,,,,≌,,≌,,在中,,即,解得:,的长为1.如图1,当点C在AF的左侧时,,则,,,,在中,由可得,解得:负值舍去;如图2,当点C在AF的右侧时,,,,,,在中,由可得,解得:负值舍去;综上,m的值为或;如图3,过点D作于点G,延长GD交BE于点H,≌,,又,且,,当点D在矩形ABEF的内部时,由可设、,则,,则;如图4,当点D在矩形ABEF的外部时,由可设、,则,,则,综上,与面积比为或.【答案点睛】本题考查了四边形的综合问题,解题的关键是掌握矩形的判定与性质、全等三角形的判定和性质及勾股定理、三角形的面积等知识点.20、规定日期是6天.【答案解析】
本题的等量关系为:甲工作2天完成的工作量+乙规定日期完成的工作量=1,把相应数值代入即可求解.【题目详解】解:设工作总量为1,规定日期为x天,则若单独做,甲队需x天,乙队需x+3天,根据题意列方程得
解方程可得x=6,
经检验x=6是分式方程的解.
答:规定日期是6天.21、(1),不可能;(2)不存在;(3)1或11.【答案解析】测试卷分析:(1)根据每件的成本y(万元)是基础价与浮动价的和,其中基础价保持不变,浮动价与月需求量x(件)成反比,结合表格,用待定系数法求y与x之间的函数关系式,再列方程求解,检验所得结果是还符合题意;(2)将表格中的n,对应的x值,代入到,求出k,根据某个月既无盈利也不亏损,得到一个关于n的一元二次方程,判断根的情况;(3)用含m的代数式表示出第m个月,第(m+1)个月的利润,再对它们的差的情况讨论.测试卷解析:(1)由题意设,由表中数据,得解得∴.由题意,若,则.∵x>0,∴.∴不可能.(2)将n=1,x=120代入,得120=2-2k+9k+27.解得k=13.将n=2,x=100代入也符合.∴k=13.由题意,得18=6+,求得x=50.∴50=,即.∵,∴方程无实数根.∴不存在.(3)第m个月的利润为w==;∴第(m+1)个月的利润为W′=.若W≥W′,W-W′=48(6-m),m取最小1,W-W′=240最大.若W<W′,W′-W=48(m-6),m+1≤12,m取最大11,W′-W=240最大.∴m=1或11.考点:待定系数法,一元二次方程根的判别式,二次函数的性质,二次函数的应用.22、(1);(2).【答案解析】测试卷分析:(1)根据概率公式可得;(2)先画树状图展示12种等可能的结果数,再找到符合条件的结果数,然后根据概率公式求解.解:(1)∵随机抽取一张卡片有4种等可能结果,其中抽到数字“﹣1”的只有1种,∴抽到数字“﹣1”的概率为;(2)画树状图如下:由树状图可知,共有12种等可能结果,其中第一次抽到数字“2”且第二次抽到数字“0”只有1种结果,∴第一次抽到数字“2”且第二次抽到数字“0”的概率为.23、(1)①见解析;②见解析;(1)1π.【答案解析】
(1)①利用点平移的坐标规律,分别画出点A、B、C的对应点A1、B1、C1的坐标,然后描点可得△A1B1C1;②利用网格特点和旋转的性质,分别画出点A1、B1、C1的对应点A1、
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 电线电缆维修服务协议
- 定制家具设计建议协议
- 双语客运值班员客运值班员岗位资格要求课件
- 铁路市场营销市场调查的类型和内容课件
- 水泥混凝土路面表面功能改善路基路面养护江西交通胡凤辉课
- 中国之治开辟新境界课件
- 个百数表课件
- 【课件】二项分布与超几何分布的应用+课件高二下学期数学人教A版(2019)选择性必修第三册
- 小提琴手劳动合同
- 不说脏话班会课件
- 药物临床试验仪器设备管理制度
- 基于深度学习的小学数学跨学科主题探究
- 2024年全国统一高考数学试卷(新高考Ⅱ)含答案
- DB65-T 4828-2024 和田玉(子料)鉴定
- 2022-2023学年北京市海淀区中关村中学八年级(下)期中数学试卷
- DB32-T 4765-2024 化工行业智能化改造数字化转型网络化联接实施指南
- 龟兔赛跑英语故事带翻译完整版
- 中学驻校教官管理方案
- Siemens Simcenter:Simcenter声振耦合分析技术教程.Tex.header
- 部编人教版七年级下-17课《紫藤萝瀑布》名师-特级教师-余映潮公开课课件
- 项目HSE组织机构和职责
评论
0/150
提交评论