版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
数据仓库OLAP技术2022/12/24数据仓库OLAP技术数据仓库OLAP技术2022/12/17数据仓库OLAP技术1议题OLAP技术简介OLAP技术简介OLAP分析方法小结2022/12/24数据仓库OLAP技术议题OLAP技术简介OLAP技术简介OLAP分析方法小结202OLAP技术简介OLAP发展背景及定义OLAP相关基本概念OLAP基本特征OLAP多维数据结构OLAP多维数据分析方法OLAP分类OLAP评价准则OLAP新的发展特征OLAP工具在移动业务分析中是否能发挥作用,为什么?2022/12/24数据仓库OLAP技术OLAP技术简介OLAP发展背景及定义OLAP工具在移动业3发展背景(一)60年代,关系型数据库之父E.F.Codd提出了关系模型,促进了OLTP(OnLineTransactionProcessing,联机事务处理)模型的发展。1993年,E.F.Codd提出了OLAP(OnLineAnalyticalProcessing联机分析处理)概念,认为OLTP已不能满足终端用户对数据库查询分析的需要,SQL对大型数据库进行的简单查询也不能满足终端用户分析的要求。用户的决策分析需要对关系数据库进行大量计算才能得到结果,而查询的结果并不能满足决策者提出的需求。因此,E.F.Codd提出了多维数据库和多维分析的概念,即OLAP。OLAP技术简介2022/12/24数据仓库OLAP技术发展背景(一)60年代,关系型数据库之父E.F.Codd提出4发展背景(二)OLAP技术简介OLTP数据OLAP数据原始数据导出数据细节性数据 综合性和提炼性数据当前值数据历史数据可更新不可更新,但周期性刷新一次处理的数据量小一次处理的数据量大面向应用,事务驱动面向分析,分析驱动面向操作人员,支持日常操作面向决策人员,支持管理需要从数据角度看,OLTP系统与OLAP系统的主要差异如下:2022/12/24数据仓库OLAP技术发展背景(二)OLAP技术简介OLTP数据OLAP数据原始数5OLAP定义OLAP技术简介定义1:OLAP(联机分析处理)是针对特定问题的联机数据访问和分析。通过对信息(维数据)的多种可能的观察形式进行快速、稳定一致和交互性的存取,允许管理决策人员对数据进行深入观察。定义2:OLAP(联机分析处理)是使分析人员、管理人员或执行人员能够从多种角度对从原始数据中转化出来的、能够真正为用户所理解的、并真实反映企业维特性的信息进行快速、一致、交互地存取,从而获得对数据的更深入了解的一类软件技术。(OLAP委员会的定义)。OLAP的目标:满足决策支持或多维环境特定的查询和报表需求,它的技术核心是“维”这个概念,因此OLAP也可以说是多维数据分析工具的集合2022/12/24数据仓库OLAP技术OLAP定义OLAP技术简介定义1:OLAP(联机分析处理6OLAP的相关基本概念OLAP技术简介维(Dimension):是人们观察数据的特定角度,是考虑问题时的一类属性,属性集合构成一个维(时间维、地理维等)
。维的层次(Generation,Level):人们观察数据的某个特定角度(即某个维)还可以存在细节程度不同的各个描述方面(时间维:日期、月份、季度、年)。维的成员(Member):维的一个取值。是数据项在某维中位置的描述。(“某年某月某日”是在时间维上位置的描述)多维数组:维和变量的组合表示。一个多维数组可以表示为:(维1,维2,……,维n,变量)。(时间,地区,漫游类型,通话费)数据单元(Cell):多维数组的取值。(2000年1月1日,上海,国际漫游,通话费XXXX元)2022/12/24数据仓库OLAP技术OLAP的相关基本概念OLAP技术简介维(Dimensio7OLAP的基本特征OLAP技术简介快速性:用户对OLAP的快速反应能力有很高的要求。系统对用户的大部分分析要求的响应速度应该为秒级。
可分析性:OLAP系统能处理与应用有关的任何逻辑分析和统计分析。多维性:多维性是OLAP的关键属性。系统提供对数据的多维视图和分析,包括对层次维和多重层次维的完全支持。信息性:不论数据量有多大,也不管数据存储在何处,OLAP系统应能及时获得信息,并且具有管理大容量信息的能力2022/12/24数据仓库OLAP技术OLAP的基本特征OLAP技术简介快速性:用户对OLAP的快8OLAP的多维数据结构OLAP技术简介超立方体结构:超立方结构指用三维或更多的维数来描述一个对象,每个维彼此垂直。数据的测量值发生在维的交叉点上,数据空间的各个部分都有相同的维属性。多立方体结构:即将超立方结构变为子立方结构。面向某一特定应用对维进行分割,它具有很强的灵活性,提高了数据(特别是稀疏数据)的分析效率。2022/12/24数据仓库OLAP技术OLAP的多维数据结构OLAP技术简介超立方体结构:超立方结9OLAP分类(一)OLAP技术简介MOLAP(MultidimensionalOnLineAnalyticalProcessing)
:数据以多维方式存储,每一个数据单元(Cell)都可以通过维度的定位直接访问。db2ROLAP(RelationalOnLineAnalyticalProcessing):数据存放于关系型数据库中,用户的多维查询请求由ROLAP引擎处理为SQL查询,结果以多维方式呈现。oracleHOLAP(Hybridonlineanalyticalprocessing):MOLAP与ROLAP的结合形式,兼具MOLAP的查询效率高和ROLAP的存储效率高的优点,预存储按照存储类型,OLAP可以分为以下三种类型:2022/12/24数据仓库OLAP技术OLAP分类(一)OLAP技术简介MOLAP(Multidi10OLAP分类(三)OLAP技术简介以多维立方体和预计算来存储,实际数据的稀疏分布以及预计算是导致MOLAP空间急剧膨胀的主要因素。MOLAP的逻辑存储模型:XXXXX2022/12/24数据仓库OLAP技术OLAP分类(三)OLAP技术简介以多维立方体和预计算来存储11OLAP分类(二)OLAP技术简介ROLAP存储模式:ROLAP数据以星型模式(StarSchema)或雪花型模式存储:事实表:用来存储事实的度量值和各个维的码值。。维表:用来存放维的元数据(维的层次、成员类别等描述信息)。Time_idSalesTableDiscount%DollarsUnits"FactTable"Market_idProduct_idScenarioProduct_idProductTableSizeBrandProduct_Desc"DimensionTable"Time_idYearQuarterPeriod_DescPeriodTable"DimensionTable"ScenarioTableActualProfitScenario"DimensionTable"Market_idMarketTableRegionDistrictMarket_Desc"DimensionTable"2022/12/24数据仓库OLAP技术OLAP分类(二)OLAP技术简介ROLAP存储模式:ROL12OLAP分类(四)OLAP技术简介没有大小限制。(因为StarSchema本身不需要额外的存储空间)
。现有的关系数据库的技术可以沿用。可以通过SQL实现详细数据与概要数据的存储。现有关系型数据库已经对OLAP做了很多优化,包括并行存储、并行查询、并行数据管理、基于成本的查询优化、位图索引、SQL的OLAP扩展(cube,rollup)等大大提高ROALP的速度ROLAP的优势:性能好、响应速度快。专为OLAP所设计。支持高性能的决策支持计算。MOLAP的优势:2022/12/24数据仓库OLAP技术OLAP分类(四)OLAP技术简介没有大小限制。(因为Sta13OLAP分类(五)OLAP技术简介比MOLAP响应速度相差极远。不支持有关预计算的读写操作。SQL无法完成部分计算。ROLAP的缺点:增加系统复杂度,增加系统培训与维护费用。需要进行预计算,可能导致数据急剧膨胀。支持维的动态变化比较困难。MOLAP的缺点:2022/12/24数据仓库OLAP技术OLAP分类(五)OLAP技术简介比MOLAP响应速度相差极14OLAP分类(六)OLAP技术简介ROLAPArchitecture:SQLResultSetInfo.RequestResultSetDatabaseServer
RDBMSFront-endToolROALPArchitectureROLAPServerMetadataRequestProcessing2022/12/24数据仓库OLAP技术OLAP分类(六)OLAP技术简介ROLAPArchite15OLAP分类(七)OLAP技术简介MOLAPArchitecture:Info.RequestResultSetLoadDatabaseServer
RDBMSFront-endToolMOALPArchitectureMOLAPServerMetadataRequestProcessing2022/12/24数据仓库OLAP技术OLAP分类(七)OLAP技术简介MOLAPArchite16OLAP分类(八)OLAP技术简介MOLAPArchitecture:SQLResultSetInfo.RequestResultSetLoadDatabaseServer
RDBMSFront-endToolHybridArchitectureMOLAPServerIntegrationServerInfo.Request2022/12/24数据仓库OLAP技术OLAP分类(八)OLAP技术简介MOLAPArchite17OLAP的多维数据分析方法简介(一)OLAP技术简介切片和切块(SliceandDice):在确定某些维数据的确定情况下对其他维进行观察,在多维数据结构中,按二维进行切片,按三维进行切块,可得到所需要的数据。如在“城市、时间、漫游”三维立方体中进行切块和切片,可得到各城市、各漫游类型的费用情况。
钻取(Drill):在一个维内沿着从高到低或者从低到高的方向考察数据,钻取包含向下钻取(Drill-down)和向上钻取(Drill-up)/上卷(Roll-up)操作,钻取的深度与维所划分的层次相对应。旋转(Rotate)/转轴(Pivot):通过旋转可以得到不同视角的数据,按不同的顺序组织维,对结果进行考察穿透:是指从多维数据库向关系型数据库读取明细数据OLAP的三种基本分析手段:多维视图2022/12/24数据仓库OLAP技术OLAP的多维数据分析方法简介(一)OLAP技术简介切片和切18时间地区漫游2003年2003年1月2003年1月1日2003年1月2日2003年1月3日2003年2月考察一个特定的维时间维,包括每一个地区漫游业务量钻取到下面的层次来考察详细情况OLAP的多维数据分析方法简介(二):钻取OLAP技术简介2022/12/24数据仓库OLAP技术时间地区漫游2003年2003年1月2003年1月1日20019时间地区漫游按照不同的顺序组合维,对数据进行考察OLAP的多维数据分析方法简介(二):旋转OLAP技术简介地区漫游时间2022/12/24数据仓库OLAP技术时间地区漫游按照不同的顺序组合维,对数据进行考察OLAP的多20OLAP的多维数据分析方法简介(三):切片、切块OLAP技术简介AdHocViewRegionalMgr.ViewProductMgr.ViewTImeMgr.ViewPRODUCTregionTIMESALES2022/12/24数据仓库OLAP技术OLAP的多维数据分析方法简介(三):切片、切块OLAP技术21OLAP的多维数据分析方法简介(四):穿透OLAP技术简介关系型数据库2022/12/24数据仓库OLAP技术OLAP的多维数据分析方法简介(四):穿透OLAP技术简介关22OLAP分类的评价标准OLAP技术简介OLAP模型必须提供多维概念模型。透明性准则,存储无法清除。存取能力准则。稳定的报表性能客户/服务器体系结构维的等同性准则,按照维度存储动态稀疏矩阵处理准则:dense,sparse多用户支持能力准则,并行非受限的跨维操作,多cube,多数据库的关联查询灵活的报表生成非受限的维与维的层次2022/12/24数据仓库OLAP技术OLAP分类的评价标准OLAP技术简介OLAP模型必须提供多23OLAP技术发展新特征OLAP技术简介聚集存储数据库(AggregateStorageDatabase):支持聚集存储数据库(由新的聚集存储核心提供)实现了在数据库聚集时间和维度可量测性两方面的动态可量测性的提高。聚集存储数据库典型只满足只读,“机架堆叠”具有大量维度的应用聚集数据可以同时满足读取和计算存储高效性能,存储量很小存储高效性和读取效率可以取得平衡点预计算可以在数据读取是进行,也可以预处理计算节点2022/12/24数据仓库OLAP技术OLAP技术发展新特征OLAP技术简介聚集存储数据库(Ag24OLAP在日常分析中随处可见KPI展示EIS多维分析数据挖掘OLAP使用分析思路(二)2022/12/24数据仓库OLAP技术OLAP在日常分析中随处可见KPI展示EIS多维分析数据挖掘25OLAP分析方法的应用主题分析数据挖掘应用报表KPI专题分析经营分析、决策支持系统平台工具APIOLAP…挖掘技术OLAP分析…SQLOLAP分析…SQLOLAP分析…SQL、挖掘OLAP分析…OLAP分析方法2022/12/24数据仓库OLAP技术OLAP分析方法的应用主题分析数据挖掘应用报表KPI专题分析26OLAP分析独立个人分析基础应用分析专题分析应用OLAP分析案例讲解思路(一)2022/12/24数据仓库OLAP技术独立个人基础应用分析专题分析OLAP分析案例讲解思路(一)227时间基础使用案例验证问题发现问题寻找答案综合使用分析之独立分析主题独立完成分析需求组织数据数据分析分析报告OLAP分析使用使用现有系统独立完成集成商的辅助之下分析需求组织数据形成方案,形成分析方法综合使用之专题分析OLAP分析使用思路(二)在集成商参与下合作完成2022/12/24数据仓库OLAP技术时间基础使用案例验证问题综合使用分析之独立完成OLAP分析使28OLAP分析案例讲解思路(一)。。。。。PPT、EXECEL工具数据挖掘技术报表,前端工具使用数据库sql专题分析独立业务分析AnalysisProjectExecutingOlap分析方法2022/12/24数据仓库OLAP技术OLAP分析案例讲解思路(一)。。。。。PPT、EXECEL29议题OLAP技术简介OLAP分析方法小结OLAP分析方法小结2022/12/24数据仓库OLAP技术议题OLAP技术简介OLAP分析方法小结OLAP分析方法小结30OLAP分析课程要点1.OLAP技术的简单介绍2.OLAP的基础分析案例3.OLAP的综合分析案例,包括套餐专题和世界风分析4.OLAP分析的重要性5.不要孤立的使用OLAP分析6.OLAP分析是经营分析系统或者是数据仓库系统中众多分析方法中的一种7.作为一个好的分析员,应该可以综合使用各类分析方法完成相应的分析2022/12/24数据仓库OLAP技术OLAP分析课程要点1.OLAP技术的简单介绍2022/1231OLAP分析独立个人分析基础应用分析专题分析应用OLAP分析方法简介2022/12/24数据仓库OLAP技术独立个人基础应用分析专题分析OLAP分析方法简介2022/132发现问题验证问题解决问题OLAP基础使用案例分析旋转切片、切块下钻、上卷OLAP分析技术穿透寻找答案OLAP分析方法简介2022/12/24数据仓库OLAP技术发现问题验证问题解决问题OLAP基础使用案例分析旋转切片、切33提出问题解决方案组织数据形成分析方法分析、组织数据、完成多维模型、生成前段展示结果、定期分析数据分析需求
在移动市场营销或者现有分析系统中发现问题第一步
分析现有问题,形成完整的需求第二步
根据需求,形成完整解决方案以及详细设计第三步
以解决方案及详细设计为准则,组织数据,生成挖掘模型和多维模型第四步
在展示页面形成完整的分析途径第五步专题分析OLAP分析方法简介2022/12/24数据仓库OLAP技术提出问题解决方案组织数据形成分析方法分析、组织数据、完成多维34提出问题解决方案组织数据出具分析报告分析、组织数据、完成多维模型、生成前段展示结果、定期分析数据分析需求
在移动市场营销或者现有分析系统中发现问题第一步
分析现有问题,形成完整的需求第二步
根据需求,形成完整分析方案以及简要设计第三步
以分析方案及简要设计为准则,组织数据,生成数据和多维模型第四步
形成专题分析的分析报告第五步独立分析OLAP分析方法简介2022/12/24数据仓库OLAP技术提出问题解决方案组织数据出具分析报告分析、组织数据、完成多维35演讲完毕,谢谢听讲!再见,seeyouagain3rew2022/12/24数据仓库OLAP技术演讲完毕,谢谢听讲!再见,seeyouagain3rew36数据仓库OLAP技术2022/12/24数据仓库OLAP技术数据仓库OLAP技术2022/12/17数据仓库OLAP技术37议题OLAP技术简介OLAP技术简介OLAP分析方法小结2022/12/24数据仓库OLAP技术议题OLAP技术简介OLAP技术简介OLAP分析方法小结2038OLAP技术简介OLAP发展背景及定义OLAP相关基本概念OLAP基本特征OLAP多维数据结构OLAP多维数据分析方法OLAP分类OLAP评价准则OLAP新的发展特征OLAP工具在移动业务分析中是否能发挥作用,为什么?2022/12/24数据仓库OLAP技术OLAP技术简介OLAP发展背景及定义OLAP工具在移动业39发展背景(一)60年代,关系型数据库之父E.F.Codd提出了关系模型,促进了OLTP(OnLineTransactionProcessing,联机事务处理)模型的发展。1993年,E.F.Codd提出了OLAP(OnLineAnalyticalProcessing联机分析处理)概念,认为OLTP已不能满足终端用户对数据库查询分析的需要,SQL对大型数据库进行的简单查询也不能满足终端用户分析的要求。用户的决策分析需要对关系数据库进行大量计算才能得到结果,而查询的结果并不能满足决策者提出的需求。因此,E.F.Codd提出了多维数据库和多维分析的概念,即OLAP。OLAP技术简介2022/12/24数据仓库OLAP技术发展背景(一)60年代,关系型数据库之父E.F.Codd提出40发展背景(二)OLAP技术简介OLTP数据OLAP数据原始数据导出数据细节性数据 综合性和提炼性数据当前值数据历史数据可更新不可更新,但周期性刷新一次处理的数据量小一次处理的数据量大面向应用,事务驱动面向分析,分析驱动面向操作人员,支持日常操作面向决策人员,支持管理需要从数据角度看,OLTP系统与OLAP系统的主要差异如下:2022/12/24数据仓库OLAP技术发展背景(二)OLAP技术简介OLTP数据OLAP数据原始数41OLAP定义OLAP技术简介定义1:OLAP(联机分析处理)是针对特定问题的联机数据访问和分析。通过对信息(维数据)的多种可能的观察形式进行快速、稳定一致和交互性的存取,允许管理决策人员对数据进行深入观察。定义2:OLAP(联机分析处理)是使分析人员、管理人员或执行人员能够从多种角度对从原始数据中转化出来的、能够真正为用户所理解的、并真实反映企业维特性的信息进行快速、一致、交互地存取,从而获得对数据的更深入了解的一类软件技术。(OLAP委员会的定义)。OLAP的目标:满足决策支持或多维环境特定的查询和报表需求,它的技术核心是“维”这个概念,因此OLAP也可以说是多维数据分析工具的集合2022/12/24数据仓库OLAP技术OLAP定义OLAP技术简介定义1:OLAP(联机分析处理42OLAP的相关基本概念OLAP技术简介维(Dimension):是人们观察数据的特定角度,是考虑问题时的一类属性,属性集合构成一个维(时间维、地理维等)
。维的层次(Generation,Level):人们观察数据的某个特定角度(即某个维)还可以存在细节程度不同的各个描述方面(时间维:日期、月份、季度、年)。维的成员(Member):维的一个取值。是数据项在某维中位置的描述。(“某年某月某日”是在时间维上位置的描述)多维数组:维和变量的组合表示。一个多维数组可以表示为:(维1,维2,……,维n,变量)。(时间,地区,漫游类型,通话费)数据单元(Cell):多维数组的取值。(2000年1月1日,上海,国际漫游,通话费XXXX元)2022/12/24数据仓库OLAP技术OLAP的相关基本概念OLAP技术简介维(Dimensio43OLAP的基本特征OLAP技术简介快速性:用户对OLAP的快速反应能力有很高的要求。系统对用户的大部分分析要求的响应速度应该为秒级。
可分析性:OLAP系统能处理与应用有关的任何逻辑分析和统计分析。多维性:多维性是OLAP的关键属性。系统提供对数据的多维视图和分析,包括对层次维和多重层次维的完全支持。信息性:不论数据量有多大,也不管数据存储在何处,OLAP系统应能及时获得信息,并且具有管理大容量信息的能力2022/12/24数据仓库OLAP技术OLAP的基本特征OLAP技术简介快速性:用户对OLAP的快44OLAP的多维数据结构OLAP技术简介超立方体结构:超立方结构指用三维或更多的维数来描述一个对象,每个维彼此垂直。数据的测量值发生在维的交叉点上,数据空间的各个部分都有相同的维属性。多立方体结构:即将超立方结构变为子立方结构。面向某一特定应用对维进行分割,它具有很强的灵活性,提高了数据(特别是稀疏数据)的分析效率。2022/12/24数据仓库OLAP技术OLAP的多维数据结构OLAP技术简介超立方体结构:超立方结45OLAP分类(一)OLAP技术简介MOLAP(MultidimensionalOnLineAnalyticalProcessing)
:数据以多维方式存储,每一个数据单元(Cell)都可以通过维度的定位直接访问。db2ROLAP(RelationalOnLineAnalyticalProcessing):数据存放于关系型数据库中,用户的多维查询请求由ROLAP引擎处理为SQL查询,结果以多维方式呈现。oracleHOLAP(Hybridonlineanalyticalprocessing):MOLAP与ROLAP的结合形式,兼具MOLAP的查询效率高和ROLAP的存储效率高的优点,预存储按照存储类型,OLAP可以分为以下三种类型:2022/12/24数据仓库OLAP技术OLAP分类(一)OLAP技术简介MOLAP(Multidi46OLAP分类(三)OLAP技术简介以多维立方体和预计算来存储,实际数据的稀疏分布以及预计算是导致MOLAP空间急剧膨胀的主要因素。MOLAP的逻辑存储模型:XXXXX2022/12/24数据仓库OLAP技术OLAP分类(三)OLAP技术简介以多维立方体和预计算来存储47OLAP分类(二)OLAP技术简介ROLAP存储模式:ROLAP数据以星型模式(StarSchema)或雪花型模式存储:事实表:用来存储事实的度量值和各个维的码值。。维表:用来存放维的元数据(维的层次、成员类别等描述信息)。Time_idSalesTableDiscount%DollarsUnits"FactTable"Market_idProduct_idScenarioProduct_idProductTableSizeBrandProduct_Desc"DimensionTable"Time_idYearQuarterPeriod_DescPeriodTable"DimensionTable"ScenarioTableActualProfitScenario"DimensionTable"Market_idMarketTableRegionDistrictMarket_Desc"DimensionTable"2022/12/24数据仓库OLAP技术OLAP分类(二)OLAP技术简介ROLAP存储模式:ROL48OLAP分类(四)OLAP技术简介没有大小限制。(因为StarSchema本身不需要额外的存储空间)
。现有的关系数据库的技术可以沿用。可以通过SQL实现详细数据与概要数据的存储。现有关系型数据库已经对OLAP做了很多优化,包括并行存储、并行查询、并行数据管理、基于成本的查询优化、位图索引、SQL的OLAP扩展(cube,rollup)等大大提高ROALP的速度ROLAP的优势:性能好、响应速度快。专为OLAP所设计。支持高性能的决策支持计算。MOLAP的优势:2022/12/24数据仓库OLAP技术OLAP分类(四)OLAP技术简介没有大小限制。(因为Sta49OLAP分类(五)OLAP技术简介比MOLAP响应速度相差极远。不支持有关预计算的读写操作。SQL无法完成部分计算。ROLAP的缺点:增加系统复杂度,增加系统培训与维护费用。需要进行预计算,可能导致数据急剧膨胀。支持维的动态变化比较困难。MOLAP的缺点:2022/12/24数据仓库OLAP技术OLAP分类(五)OLAP技术简介比MOLAP响应速度相差极50OLAP分类(六)OLAP技术简介ROLAPArchitecture:SQLResultSetInfo.RequestResultSetDatabaseServer
RDBMSFront-endToolROALPArchitectureROLAPServerMetadataRequestProcessing2022/12/24数据仓库OLAP技术OLAP分类(六)OLAP技术简介ROLAPArchite51OLAP分类(七)OLAP技术简介MOLAPArchitecture:Info.RequestResultSetLoadDatabaseServer
RDBMSFront-endToolMOALPArchitectureMOLAPServerMetadataRequestProcessing2022/12/24数据仓库OLAP技术OLAP分类(七)OLAP技术简介MOLAPArchite52OLAP分类(八)OLAP技术简介MOLAPArchitecture:SQLResultSetInfo.RequestResultSetLoadDatabaseServer
RDBMSFront-endToolHybridArchitectureMOLAPServerIntegrationServerInfo.Request2022/12/24数据仓库OLAP技术OLAP分类(八)OLAP技术简介MOLAPArchite53OLAP的多维数据分析方法简介(一)OLAP技术简介切片和切块(SliceandDice):在确定某些维数据的确定情况下对其他维进行观察,在多维数据结构中,按二维进行切片,按三维进行切块,可得到所需要的数据。如在“城市、时间、漫游”三维立方体中进行切块和切片,可得到各城市、各漫游类型的费用情况。
钻取(Drill):在一个维内沿着从高到低或者从低到高的方向考察数据,钻取包含向下钻取(Drill-down)和向上钻取(Drill-up)/上卷(Roll-up)操作,钻取的深度与维所划分的层次相对应。旋转(Rotate)/转轴(Pivot):通过旋转可以得到不同视角的数据,按不同的顺序组织维,对结果进行考察穿透:是指从多维数据库向关系型数据库读取明细数据OLAP的三种基本分析手段:多维视图2022/12/24数据仓库OLAP技术OLAP的多维数据分析方法简介(一)OLAP技术简介切片和切54时间地区漫游2003年2003年1月2003年1月1日2003年1月2日2003年1月3日2003年2月考察一个特定的维时间维,包括每一个地区漫游业务量钻取到下面的层次来考察详细情况OLAP的多维数据分析方法简介(二):钻取OLAP技术简介2022/12/24数据仓库OLAP技术时间地区漫游2003年2003年1月2003年1月1日20055时间地区漫游按照不同的顺序组合维,对数据进行考察OLAP的多维数据分析方法简介(二):旋转OLAP技术简介地区漫游时间2022/12/24数据仓库OLAP技术时间地区漫游按照不同的顺序组合维,对数据进行考察OLAP的多56OLAP的多维数据分析方法简介(三):切片、切块OLAP技术简介AdHocViewRegionalMgr.ViewProductMgr.ViewTImeMgr.ViewPRODUCTregionTIMESALES2022/12/24数据仓库OLAP技术OLAP的多维数据分析方法简介(三):切片、切块OLAP技术57OLAP的多维数据分析方法简介(四):穿透OLAP技术简介关系型数据库2022/12/24数据仓库OLAP技术OLAP的多维数据分析方法简介(四):穿透OLAP技术简介关58OLAP分类的评价标准OLAP技术简介OLAP模型必须提供多维概念模型。透明性准则,存储无法清除。存取能力准则。稳定的报表性能客户/服务器体系结构维的等同性准则,按照维度存储动态稀疏矩阵处理准则:dense,sparse多用户支持能力准则,并行非受限的跨维操作,多cube,多数据库的关联查询灵活的报表生成非受限的维与维的层次2022/12/24数据仓库OLAP技术OLAP分类的评价标准OLAP技术简介OLAP模型必须提供多59OLAP技术发展新特征OLAP技术简介聚集存储数据库(AggregateStorageDatabase):支持聚集存储数据库(由新的聚集存储核心提供)实现了在数据库聚集时间和维度可量测性两方面的动态可量测性的提高。聚集存储数据库典型只满足只读,“机架堆叠”具有大量维度的应用聚集数据可以同时满足读取和计算存储高效性能,存储量很小存储高效性和读取效率可以取得平衡点预计算可以在数据读取是进行,也可以预处理计算节点2022/12/24数据仓库OLAP技术OLAP技术发展新特征OLAP技术简介聚集存储数据库(Ag60OLAP在日常分析中随处可见KPI展示EIS多维分析数据挖掘OLAP使用分析思路(二)2022/12/24数据仓库OLAP技术OLAP在日常分析中随处可见KPI展示EIS多维分析数据挖掘61OLAP分析方法的应用主题分析数据挖掘应用报表KPI专题分析经营分析、决策支持系统平台工具APIOLAP…挖掘技术OLAP分析…SQLOLAP分析…SQLOLAP分析…SQL、挖掘OLAP分析…OLAP分析方法2022/12/24数据仓库OLAP技术OLAP分析方法的应用主题分析数据挖掘应用报表KPI专题分析62OLAP分析独立个人分析基
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 追梦励志演讲稿(35篇)
- 身边的调查报告5篇
- 让小学生轻松爱上英语的技巧
- 设备维护服务方案样本
- 设计合同解除策略研究
- 诚心担保真实性的誓言
- 语文大专科学素养卷
- 豪华大巴接机服务合同
- 购买牛只合同范例
- 购销合同格式与书写规范
- 汽车零部件编号规则
- 数控机床主轴结构与调整课件
- 煤矿一通三防煤矿一通三防培训教案
- 最新液化气站风险分级及隐患治理体系手册
- SAP HANA 定制化平台(TDI)方案
- 中医诊疗养生中心招商加盟手册
- 桥梁拆除施工方案模板
- (学前教育原理)大作业:你身边的蒙氏幼儿园的教育现状是怎样的?你怎样理解蒙台梭利教育思想的精髓?
- (中金)银行业分析框架ppt课件
- 《色彩搭配》PPT课件(教学)
- 《颈椎病病人的护理》PPT课件(完整版)
评论
0/150
提交评论