




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年高一上数学期末模拟试卷考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.设,,则正实数,的大小关系为A. B.C. D.2.已知扇形的周长为15cm,圆心角为3rad,则此扇形的弧长为()A.3cm B.6cmC.9cm D.12cm3.下列说法正确的是()A.向量与共线,与共线,则与也共线B.任意两个相等的非零向量的始点与终点是一个平行四边形的四个顶点C.向量与不共线,则与都是非零向量D.有相同起点的两个非零向量不平行4.已知向量,,,则A. B.C. D.5.在中,,则等于A. B.C. D.6.设,是两个不同的平面,,是两条不同的直线,且,A.若,则 B.若,则C.若,则 D.若,则7.在空间直角坐标系中,一个三棱锥的顶点坐标分别是,,,.则该三棱锥的体积为()A. B.C. D.28.若,则a,b,c的大小关系是()A. B.C. D.9.直线的倾斜角为()A. B.30°C.60° D.120°10.17世纪德国著名的天文学家开普勒曾经这样说过:“几何学里有两件宝,一个是勾股定理,另一个是黄金分割.如果把勾股定理比作黄金矿的话,那么可以把黄金分割比作钻石矿.”黄金三角形有两种,其中底与腰之比为黄金分割比的黄金三角形被认为是最美的三角形,它是一个顶角为的等腰三角形(另一种是顶角为108°的等腰三角形).例如,五角星由五个黄金三角形与一个正五边形组成,如图所示,在其中一个黄金中,.根据这些信息,可得()A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.已知,则__________.12.设函数,若关于x的方程有且仅有6个不同的实根.则实数a的取值范围是_______.13.幂函数的图象经过点,则________14.不等式的解为______15.若不等式在上恒成立,则实数a的取值范围为____.16.给出下列命题“①设表示不超过的最大整数,则;②定义:若任意,总有,就称集合为的“闭集”,已知且为的“闭集”,则这样的集合共有7个;③已知函数为奇函数,在区间上有最大值5,那么在上有最小值.其中正确的命题序号是_________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知.(1)求及;(2)若,,求的值.18.已知定义在上的奇函数满足:①;②对任意的均有;③对任意的,,均有.(1)求的值;(2)证明在上单调递增;(3)是否存在实数,使得对任意的恒成立?若存在,求出的取值范围;若不存在,请说明理由.19.(1)求的值;(2)求的值20.有一种候鸟每年都按一定的路线迁陟,飞往繁殖地产卵.科学家经过测量发现候鸟的飞行速度可以表示为函数,单位是,其中表示候鸟每分钟耗氧量的单位数,表示测量过程中候鸟每分钟的耗氧偏差.(参考数据:,,)(1)若=3,候鸟每分钟的耗氧量为8100个单位时,它的飞行速度是多少?(2)若=6,候鸟停下休息时,它每分钟的耗氧量为多少个单位?(3)若雄鸟的飞行速度为,雌鸟的飞行速度为,那么此时雄鸟每分钟的耗氧量是雌鸟每分钟的耗氧量的多少倍?21.已知函数,其中,.(1)若,求函数的最大值;(2)若在上的最大值为,最小值为,试求,的值.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解析】由,知,,又根据幂函数的单调性知,,故选A2、C【解析】利用扇形弧长公式进行求解.【详解】设扇形弧长为lcm,半径为rcm,则,即且,解得:(cm),故此扇形的弧长为9cm.故选:C3、C【解析】根据共线向量(即平行向量)定义即可求解.【详解】解:对于A:可能是零向量,故选项A错误;对于B:两个向量可能在同一条直线上,故选项B错误;对于C:因为与任何向量都是共线向量,所以选项C正确;对于D:平行向量可能在同一条直线上,故选项D错误故选:C.4、D【解析】A项:利用向量的坐标运算以及向量共线的等价条件即可判断.B项:利用向量模的公式即可判断.C项:利用向量的坐标运算求出数量积即可比较大小.D项:利用向量加法的坐标运算即可判断.【详解】A选项:因为,,所以与不共线.B选项:,,显然,不正确.C选项:因为,所以,不正确;D选项:因为,所以,正确;答案为D.【点睛】主要考查向量加、减、数乘、数量积的坐标运算,还有向量模的公式以及向量共线的等价条件的运用.属于基础题.5、C【解析】分析:利用两角和的正切公式,求出的三角函数值,求出的大小,然后求出的值即可详解:由,则,因为位三角形的内角,所以,所以,故选C点睛:本题主要考查了两角和的正切函数的应用,解答中注意公式的灵活运用以及三角形内角定理的应用,着重考查了推理与计算能力6、A【解析】由面面垂直的判定定理:如果一个平面经过另一平面的一条垂线,则两面垂直,可得,可得考点:空间线面平行垂直的判定与性质7、A【解析】由题,在空间直角坐标系中找到对应的点,进而求解即可【详解】由题,如图所示,则,故选:A【点睛】本题考查三棱锥的体积,考查空间直角坐标系的应用8、A【解析】根据题意,以及指数和对数的函数的单调性,来确定a,b,c的大小关系.【详解】解:是增函数,是增函数.,又,【点睛】本题考查三个数的大小的求法,考查指数函数和对数函数性质等基础知识,考查运算求解能力,是基础题.根据题意,构造合适的对数函数和指数函数,利用指数对数函数的单调性判定的范围是关键.9、C【解析】根据直线的斜率即可得倾斜角.【详解】因为直线的斜率为,所以直线的倾斜角为满足,即故选:C.10、C【解析】先求出,再根据二倍角余弦公式求出,然后根据诱导公式求出.【详解】由题意可得:,且,所以,所以,故选:C【点睛】本题考查了二倍角的余弦公式和诱导公式,属于基础题.二、填空题:本大题共6小题,每小题5分,共30分。11、##【解析】首先根据同角三角函数的基本关系求出,再利用二倍角公式及同角三角函数的基本关系将弦化切,最后代入计算可得;【详解】解:因为,所以,所以故答案为:12、或或【解析】作出函数的图象,设,分关于有两个不同的实数根、,和两相等实数根进行讨论,当方程有两个相等的实数根时,再检验,当方程有两个不同的实数根、时,或,再由二次方程实数根的分布进行讨论求解即可.【详解】作出函数的简图如图,令,要使关于的方程有且仅有个不同的实根,(1)当方程有两个相等的实数根时,由,即,此时当,此时,此时由图可知方程有4个实数根,此时不满足.当,此时,此时由图可知方程有6个实数根,此时满足条件.(2)当方程有两个不同的实数根、时,则或当时,由可得则的根为由图可知当时,方程有2个实数根当时,方程有4个实数根,此时满足条件.当时,设由,则,即综上所述:满足条件的实数a的取值范围是或或故答案为:或或【点睛】关键点睛:本题考查利用复合型二次函数的零点个数求参数,考查数形结合思想的应用,解答本题的关键由条件结合函数的图象,分析方程的根情况及其范围,再由二次方程实数根的分布解决问题,属于难题.13、【解析】设幂函数的解析式,然后代入求解析式,计算.【详解】设,则,解得,所以,得故答案为:14、【解析】根据幂函数的性质,分类讨论即可【详解】将不等式转化成(Ⅰ),解得;(Ⅱ),解得;(Ⅲ),此时无解;综上,不等式的解集为:故答案为:15、【解析】把不等式变形为,分和情况讨论,数形结合求出答案.【详解】解:变形为:,即在上恒成立令,若,此时在上单调递减,,而当时,,显然不合题意;当时,画出两个函数的图象,要想满足在上恒成立,只需,即,解得:综上:实数a的取值范围是.故答案为:16、①②【解析】对于①,如果,则,也就是,所以,进一步计算可以得到该和为,故①正确;对于②,我们把分成四组:,由题设可知不是“闭集”中的元素,其余三组元素中的每组元素必定在“闭集”中同时出现或同时不出现,故所求的“闭集”的个数为,故②正确;对于③,因为在上的最大值为,故在上的最大值为,所以在上的最小值为,在上的最小值为,故③错.综上,填①②点睛:(1)根据可以得到,因此,这样的共有,它们的和为,依据这个规律可以写出和并计算该和(2)根据闭集的要求,中每组元素都是同时出现在闭集中或者同时不出现在闭集中,故可以根据子集的个数公式来计算(3)注意把非奇非偶函数转化为奇函数或偶函数来讨论三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1),;(2).【解析】(1)应用二倍角正切公式求,由和角正切公式求.(2)根据已知角的范围及函数值,结合同角三角函数的平方关系求,,进而应用和角正弦公式求.【小问1详解】,.【小问2详解】,.,..18、(1)0;(2)详见解析;(3)存在,.【解析】(1)利用赋值法即求;(2)利用单调性的定义,由题可得,结合条件可得,即证;(3)利用赋值法可求,结合函数的单调性可把问题转化为,是否存在实数,使得或在恒成立,然后利用参变分离法即求.【小问1详解】∵对任意的,,均有,令,则,∴;【小问2详解】,且,则又,对任意的均有,∴,∴∴函数在上单调递增.【小问3详解】∵函数为奇函数且在上单调递增,∴函数在上单调递增,令,可得,令,可得,又,∴,又函数在上单调递增,在上单调递增,∴由,可得或,即是否存在实数,使得或对任意的恒成立,令,则,则对于恒成立等价于在恒成立,即在恒成立,又当时,,故不存在实数,使得恒成立,对于对任意的恒成立,等价于在恒成立,由,可得在恒成立,又,在上单调递减,∴,综上可得,存在使得对任意的恒成立.【点睛】关键点点睛:本题第二问的关键是配凑,然后利用条件可证;第三问的关键是转化为否存在实数,使得或在恒成立,再利用参变分离法解决.19、(1);(2)【解析】(1)根据指数幂的运算性质,化简计算,即可得答案.(2)根据对数的运算性质,化简计算,即可得答案.【详解】(1)原式;(2)原式20、(1)(2)555(3)9【解析】(1)直接代入求值即可,其中要注意对数的运算;(2)还是代入求值即可;(3)代入后得两个方程,此时我们不需要解出、,只要求出它们的比值即可,所以由对数的运算性质,让两式相减,就可求得【小问1详解】解:因为候鸟的飞行速度可以表示为函数,所以将,代入函数式可得:故此时候鸟飞行速度为【小问2详解】解:因为候鸟的飞行速度可以表示为函数,将,代入函数式可得:即所以于是故候鸟停下休息时,它每分钟的耗氧量为
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 护理个案:上消化道出血
- 护理礼仪与护士服饰
- 养发行业的优势与前景
- 焦作大学《数学教学技能综合训练》2023-2024学年第一学期期末试卷
- 企业竞争策略研究报告
- 信阳农林学院《标志设计》2023-2024学年第二学期期末试卷
- 漯河食品职业学院《统计学原理与实务》2023-2024学年第二学期期末试卷
- 大连民族大学《OS开发技术》2023-2024学年第二学期期末试卷
- 天津中德应用技术大学《节能技术》2023-2024学年第二学期期末试卷
- 兰州职业技术学院《中医文献学》2023-2024学年第一学期期末试卷
- 新人教版高中数学必修第二册第八章立体几何初步课件
- 《石壕吏》课件(共17张PPT)
- 机场现场运行指挥员(教材章节)
- 颈椎功能障碍指数,Neck Disabilitv Index,NDI
- 关注素养 知行合一 优化学校课程建设-“快乐五会”之“学会环保”校本课程开发与实施的研究
- 工程利益相关方的博弈 工程伦理学课件
- 如何落实“三管三必须”完整ppt
- 工程结算表单模板
- DB65∕T 4492-2022 和田玉(白玉)分级
- 超星尔雅学习通《大学生职业发展与就业指导(仁能达教育科技公司)》2020章节测试含答案(下)
- 2019外研社高中英语必修二课文翻译
评论
0/150
提交评论