版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年高一上数学期末模拟试卷注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(本大题共10小题;在每小题给出的四个选项中,只有一个选项符合题意,请将正确选项填涂在答题卡上.)1.如果AB>0,BC>0,那么直线Ax-By-C=0不经过的象限是A.第一象限 B.第二象限C.第三象限 D.第四象限2.已知是奇函数,且满足,当时,,则在内是A.单调增函数,且 B.单调减函数,且C.单调增函数,且 D.单调减函数,且3.下列各式不正确的是()A.sin(α+)=-sinα B.cos(α+)=-sinαC.sin(-α-2)=-sinα D.cos(α-)=sinα4.△ABC的内角、、的对边分别为、、,若,,,则()A. B.C. D.5.如图所示,观察四个几何体,其中判断错误的是()A.不是棱台 B.不是圆台C.不是棱锥 D.是棱柱6.如果两个函数的图象经过平移后能够重合,则称这两个函数为“互为生成”函数,给出下列函数:;;;,其中“互为生成”函数的是A. B.C. D.7.函数与则函数所有零点的和为A.0 B.2C.4 D.88.已知点是第三象限的点,则的终边位于()A.第一象限 B.第二象限C.第三象限 D.第四象限9.定义在上的偶函数在时为增函数,若实数满足,则的取值范围是A. B.C. D.10.已知函数f(x)=是奇函数,若f(2m-1)+f(m-2)≥0,则m的取值范围为()A. B.C. D.二、填空题(本大题共5小题,请把答案填在答题卡中相应题中横线上)11.给出以下四个结论:①若函数的定义域为,则函数的定义域是;②函数(其中,且)图象过定点;③当时,幂函数的图象是一条直线;④若,则的取值范围是;⑤若函数在区间上单调递减,则的取值范围是.其中所有正确结论的序号是___________.12.已知函数.则函数的最大值和最小值之积为______13.已知指数函数的解析式为,则函数的零点为_________14.求值:____.15.已知函数,若,则实数的取值范围是__________.三、解答题(本大题共6小题.解答应写出文字说明,证明过程或演算步骤.)16.设集合,,不等式的解集为(1)当a为0时,求集合、;(2)若,求实数的取值范围17.已知为锐角,,(1)求和的值;(2)求和的值18.假设有一套住房从2002年的20万元上涨到2012年的40万元.下表给出了两种价格增长方式,其中是按直线上升的房价,是按指数增长的房价,是2002年以来经过的年数.05101520万元2040万元2040(1)求函数的解析式;(2)求函数的解析式;(3)完成上表空格中的数据,并在同一直角坐标系中画出两个函数的图像,然后比较两种价格增长方式的差异.19.(1)求式子lg25+lg2+的值(2)已知tan=2.求2sin2-3sincos+cos2的值.20.已知函数的一段图像如图所示.(1)求此函数的解析式;(2)求此函数在上的单调递增区间.21.已知函数(1)若是定义在上的偶函数,求实数的值;(2)在(1)条件下,若,求函数的零点
参考答案一、选择题(本大题共10小题;在每小题给出的四个选项中,只有一个选项符合题意,请将正确选项填涂在答题卡上.)1、B【解析】斜率为,截距,故不过第二象限.考点:直线方程.2、A【解析】先根据f(x+1)=f(x﹣1)求出函数周期,然后根据函数在x∈(0,1)时上的单调性和函数值的符号推出在x∈(﹣1,0)时的单调性和函数值符号,最后根据周期性可求出所求【详解】∵f(x+1)=f(x﹣1),∴f(x+2)=f(x)即f(x)是周期为2的周期函数∵当x∈(0,1)时,>0,且函数在(0,1)上单调递增,y=f(x)是奇函数,∴当x∈(﹣1,0)时,f(x)<0,且函数在(﹣1,0)上单调递增根据函数的周期性可知y=f(x)在(1,2)内是单调增函数,且f(x)<0故选A【点睛】本题主要考查了函数的周期性和函数的单调性,同时考查了分析问题,解决问题的能力,属于基础题3、B【解析】将视为锐角,根据“奇变偶不变,符号看象限”得出答案.【详解】将视为锐角,∵在第三象限,正弦为负值,且是的2倍为偶数,不改变三角函数的名称,∴,A正确;∵在第四象限,余弦为正值,且是的3倍为奇数数,要改变三角函数的名称,∴,B错误;∵,在第四象限,正弦为负值,且0是的0倍为偶数,不改变三角函数的名称,∴,C正确;∵在第四象限,余弦为正值,且是的1倍为奇数,要改变三角函数的名称,∴,D正确.故选:B.4、C【解析】由已知利用余弦定理可求的值,利用等腰三角形的性质可求的值.【详解】解:∵,,,∴由余弦定理可得,求得:c=1.∴∴.故选:C.【点睛】本题主要考查了余弦定理在解三角形中应用,属于基础题.5、C【解析】利用几何体的定义解题.【详解】A.根据棱台的定义可知几何体不是棱台,所以A是正确的;B.根据圆台的定义可知几何体不是圆台,所以B是正确的;C.根据棱锥的定义可知几何体是棱锥,所以C是错误的;D.根据棱柱的定义可知几何体是棱柱,所以D是正确的.故答案为C【点睛】本题主要考查棱锥、棱柱、圆台、棱台的定义,意在考查学生对这些知识的掌握水平和分析推理能力.6、D【解析】根据“互为生成”函数的定义,利用三角恒等变换化简函数的解析式,再结合函数的图象变换规律,得出结论【详解】∵;;;,故把中的函数的图象向右平移后再向下平移1个单位,可得中的函数图象,故为“互为生成”函数,故选D【点睛】本题主要主要考查新定义,三角恒等变换,函数的图象变换规律,属于中档题7、C【解析】分析:分别作与图像,根据图像以及对称轴确定零点以及零点的和.详解:分别作与图像,如图,则所有零点的和为,选C.点睛:对于方程解的个数(或函数零点个数)问题,可利用函数的值域或最值,结合函数的单调性、草图确定其中参数范围.从图象的最高点、最低点,分析函数的最值、极值;从图象的对称性,分析函数的奇偶性;从图象的走向趋势,分析函数的单调性、周期性等8、D【解析】根据三角函数在各象限的符号即可求出【详解】因为点是第三象限的点,所以,故的终边位于第四象限故选:D9、C【解析】因为定义在上的偶函数,所以即又在时为增函数,则,解得故选点睛:本题考查了函数的奇偶性,单调性和运用,考查对数不等式的解法及运算能力,所求不等式中与由对数式运算法则可知互为相反数,与偶函数的性质结合可将不等式化简,借助函数在上是增函数可确定在为减函数,利用偶函数的对称性可得到自变量的范围,从而求得关于的不等式,结合对数函数单调性可得到的取值范围10、B【解析】由已知结合f(0)=0求得a=-1,得到函数f(x)在R上为增函数,利用函数单调性化f(2m-1)+f(m-2)≥0为f(2m-1)≥f(-m+2),即2m-1≥-m+2,则答案可求【详解】∵函数f(x)=的定义域为R,且是奇函数,,即a=-1,∵2x在(-∞,+∞)上为增函数,∴函数在(-∞,+∞)上为增函数,由f(2m-1)+f(m-2)≥0,得f(2m-1)≥f(-m+2),∴2m-1≥-m+2,可得m≥1∴m的取值范围为m≥1故选B【点睛】本题考查函数单调性与奇偶性的应用,考查数学转化思想方法,是中档题二、填空题(本大题共5小题,请把答案填在答题卡中相应题中横线上)11、①④⑤【解析】根据抽象函数的定义域,对数函数的性质、幂函数的定义、对数不等式的求解方法,以及复合函数单调性的讨论,对每一项进行逐一分析,即可判断和选择.【详解】对①:因为,,所以的定义域为,令,故,即的定义域为,故①正确;对②:当,,图象恒过定点,故②错误;对③:若,则的图象是两条射线,故③错误;对④:原不等式等价于,故(无解)或,解得,故④正确;对⑤:实数应满足,解得,故⑤正确;综上所述:正确结论的序号为①④⑤.【点睛】(1)抽象函数的定义域是一个难点,一般地,如果已知的定义域为,的定义域为,那么的定义域为;如果已知的定义域为,那么的定义域可取为.(2)形如的复合函数,如果已知其在某区间上是单调函数,我们不仅要考虑在给定区间上单调性,还要考虑到其在给定区间上总有成立.12、80【解析】根据二次函数的性质直接计算可得.【详解】因为,所以当时,,当时,,所以最大值和最小值之积为.故答案为:8013、1【解析】解方程可得【详解】由得,故答案为:114、【解析】根据诱导公式以及正弦的两角和公式即可得解【详解】解:因为,故答案为:15、【解析】先确定函数单调性,再根据单调性化简不等式,最后解一元二次不等式得结果.【详解】在上单调递增,在上单调递增,且在R上单调递增因此由得故答案为:【点睛】本题考查根据函数单调性解不等式,考查基本分析求解能力,属中档题.三、解答题(本大题共6小题.解答应写出文字说明,证明过程或演算步骤.)16、(1),;(2)或【解析】(1)根据题意,由可得结合,解不等式可得集合,(2)根据题意,分是否为空集2种情况讨论,求出的取值范围,综合即可得答案【详解】解:(1)根据题意,集合,,当时,,,则,(2)根据题意,若,分2种情况讨论:①,当时,即时,,成立;②,当时,即时,,若,必有,解可得,综合可得的取值范围为或【点睛】本题考查集合的包含关系的应用,(2)中注意讨论为空集,属于基础题17、(1),(2),【解析】(1)由为锐角,可求出,利用同角之间的关系可求出,由正弦的两角和求.(2)利用同角之间的关系可求出,根据结合余弦的差角公式可得出答案.【小问1详解】因为为锐角,且,所以所以【小问2详解】因为为锐角,所以所以所以18、(1)(2)(3)详见解析【解析】(1)因为是按直线上升的房价,设,由表格可知,,进而求解即可;(2)因为是按指数增长的房价,设,由表格可知,,进而求解即可;(3)由(1)(2)补全表格,画出图像,进而分析即可【详解】(1)因为是按直线上升的房价,设,由,,可得,即.(2)因为是按指数增长的房价,设,由,可得,即.(3)由(1)和(2),当时,;当时,;当时,,则表格如下:05101520万元2030405060万元204080则图像为:根据表格和图像可知:房价按函数呈直线上升,每年的增加量相同,保持相同的增长速度;按函数呈指数增长,每年的增加量越来越大,开始增长慢,然后会越来越快,但保持相同的增长比例.【点睛】本题考查一次函数、指数型函数在实际中的应用,考查理解分析能力19、(1);(2).【解析】(1)利用的对数性质计算即可;(2)利用三角函数同角关系计算即可.【详解】=;,在第一或第三象限,,,若在第一象限,则,若在第三象限,则,不论是在第一或第三象限,都有,原式;综上,答案为:,.20、(1);(2)和.【解析】(1)根据三角函数的图象求出A,ω,φ,即可确定函数的解析式;(2)根据函数的表达式,即可求函数f(x)的单调递增区间;【详解】(1)由函数的图象可知A,,∴周期T=16,∵T16,∴ω,∴y=2sin(x+φ),∵函数的图象经过(2,﹣2),∴φ=2kπ,即φ,又|φ|<π,∴φ;∴函数的解析式为:y=2sin(x)(2)由已知得,得16k+2≤x≤16k+10,即函数的单调递增区间为[16k+2,16k+10],k∈Z当k=
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年度PVC管材绿色生产技术合作合同
- 酒店安装幕墙合同模板
- 2024版大蒜种植基地物流运输服务合同2篇
- 2024年度软件定制开发合同技术保密条款3篇
- 2024年旧房改造设计施工合同
- 2024版农业项目垫资服务合同规范文本3篇
- 2024年度品牌许可使用合同中许可方违反使用约定的违约处理3篇
- 高档玩具采购合同范例
- 2024年度品牌形象重塑与公关活动合同3篇
- 订立合同范例100例
- 国家开放大学电大《建筑制图基础》机考三套标准题库及答案3
- 降低故障工单回复不合格率
- 可涂色简笔画打印(共20页)
- 灯光架介绍及使用说明
- 十一学校行动纲要
- GB 1886.6-2016 食品安全国家标准 食品添加剂 硫酸钙(高清版)
- 关于房屋征收及土地收储过程中的税收政策(仅供参考)
- 唯一住房补贴申请书(共2页)
- 单面多轴钻孔组合机床动力滑台液压系统课程设计
- 中医养生脾胃为先PPT文档
- 门窗工程成品保护方案(附图)
评论
0/150
提交评论