版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年高一上数学期末模拟试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确答案涂在答题卡上.)1.过点且与直线垂直的直线方程为A. B.C. D.2.设若,,,则()A. B.C. D.3.已知幂函数的图像过点,若,则实数的值为A. B.C. D.4.已知函数,则()A.0 B.1C.2 D.105.若一元二次不等式的解集为,则的值为()A. B.0C. D.26.若集合,则()A. B.C. D.7.如图,网格纸上小正方形的边长均为,粗线画出的是某几何体的三视图,若该几何体的体积为,则()A. B.C. D.8.根据表格中的数据,可以判定函数的一个零点所在的区间为.A. B.C. D.9.下列函数中,既是奇函数又在定义域上是增函数是()A. B.C. D.10.已知等边的边长为2,为内(包括三条边上)一点,则的最大值是A.2 B.C.0 D.11.已知函数f(x)=loga(x+1)(其中a>1),则f(x)<0的解集为()A. B.C. D.12.为了节约水资源,某地区对居民用水实行“阶梯水价”制度:将居民家庭全年用水量(取整数)划分为三档,水价分档递增,其标准如下:阶梯居民家庭全年用水量(立方米)水价(元/立方米)其中水费(元/立方米)水资源费(元/立方米)污水处理费(元/立方米)第一阶梯0-180(含)52.071.571.36第二阶梯181-260(含)74.07第三阶梯260以上96.07如该地区某户家庭全年用水量为300立方米,则其应缴纳的全年综合水费(包括水费、水资源费及污水处理费)合计为元.若该地区某户家庭缴纳的全年综合水费合计为1180元,则此户家庭全年用水量为()A.170立方米 B.200立方米C.220立方米 D.236立方米二、选择题(本大题共4小题,每小题5分,共20分,将答案写在答题卡上.)13.已知正四棱锥的底面边长为4cm,高与斜高的夹角为,则该正四棱锥的侧面积等于________cm214.已知幂函数在区间上单调递减,则___________.15.两条直线与互相垂直,则______16.已知球有个内接正方体,且球的表面积为,则正方体的边长为__________三、解答题(本大题共6个小题,共70分。解答时要求写出必要的文字说明、证明过程或演算步骤。)17.已知函数其中,求:函数的最小正周期和单调递减区间;函数图象的对称轴18.已知函数fx(1)求实数a的值;(2)当a>0时,①判断fx②对任意实数x,不等式fsin2x+19.已知函数,其图像过点,相邻两条对称轴之间的距离为(1)求函数的解析式;(2)将函数的图像上每一点的横坐标伸长到原来的2倍,纵坐标保持不变,得到函数的图像,若方程在上有两个不相等的实数解,求实数m的取值范围20.设函数(且)(1)若函数存在零点,求实数的最小值;(2)若函数有两个零点分别是,且对于任意的时恒成立,求实数的取值集合.21.已知集合A={x|x2-px+q=0},B={x|x2-x-6=0}(Ⅰ)若A∪B={-2,1,3},A∩B={3},用列举法表示集合A;(Ⅱ)若∅AB,且p+q>0,求p,q的值22.已知函数(1)求不等式的解集;(2)将图像上所有点的横坐标缩短为原来的(纵坐标不变),再将所得图像向右平移个单位长度,得到函数的图像.求在区间上的值域
参考答案一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确答案涂在答题卡上.)1、D【解析】所求直线的斜率为,故所求直线的方程为,整理得,选D.2、A【解析】将分别与比较大小,即可判断得三者的大小关系.【详解】因为,,,所以可得的大小关系为.故选:A3、D【解析】将点代入函数解析式,求出参数值,令函数值等于3,可求出自变量的值.详解】依题意有2=4a,得a=,所以,当时,m=9.【点睛】本题考查函数解析式以及由函数值求自变量,一般由函数值求自变量的值时要注意自变量取值范围以及题干的要求,避免多解.4、B【解析】根据分段函数的解析式直接计算即可.【详解】.故选:B.5、C【解析】由不等式与方程的关系转化为,从而解得【详解】解:∵不等式kx2﹣2x+k<0的解集为{x|x≠m},∴,解得,k=﹣1,m=﹣1,故m+k=﹣2,故选:C6、B【解析】集合、与集合之间的关系用或,元素0与集合之间的关系用或,ACD选项都使用错误。【详解】,只有B选项的表示方法是正确的,故选:B。【点睛】本题考查了元素与集合、集合与集合之间的关系的表示方法,注意集合与集合之间的关系是子集(包含于),元素与集合之间的关系是属于或不属于。本题属于基础题。7、B【解析】作出几何体实物图,并将该几何体的体积用表示,结合题中条件可求出的值.【详解】由三视图可知,该几何体由一个正方体截去四分之一而得,其体积为,即,解得.故选:B.【点睛】本题考查利用三视图计算空间几何体的体积,解题的关键就是作出几何体的实物图,考查空间想象能力与计算能力,属于中等题.8、D【解析】函数,满足.由零点存在定理可知函数的一个零点所在的区间为.故选D.点睛:函数的零点问题,常根据零点存在性定理来判断,如果函数y=f(x)在区间[a,b]上的图象是连续不断的一条曲线,且有f(a)·f(b)<0,那么,函数y=f(x)在区间(a,b)内有零点,即存在c∈(a,b)使得f(c)=0,
这个c也就是方程f(x)=0的根.由此可判断根所在区间.9、D【解析】根据基本初等函数的单调性以及单调性的性质、函数奇偶性的定义逐一判断四个选项【详解】对于A:为偶函数,在定义域上不是增函数,故A不正确;对于B:为奇函数,在上单调递增,但在定义域上不是增函数,故B不正确;对于C:既不是奇函数也不是偶函数,故C不正确;对于D:,所以是奇函数,因为是上的增函数,故D正确;故选:D10、A【解析】建立如图所示的平面直角坐标系,则,设点P的坐标为,则故令,则t表示内(包括三条边上)上的一点与点间的距离的平方.结合图形可得当点与点B或C重合时t可取得最大值,且最大值为,故的最大值为.选A点睛:通过建立坐标系,将问题转化为向量的坐标运算可使得本题的解答代数化,在得到向量数量积的表达式后,根据表达式的特征再利用数形结合的思路求解是解题的关键,借助图形的直观性可容易得到答案11、D【解析】因为已知a的取值范围,直接根据根据对数函数的单调性和定点解出不等式即可【详解】因为,所以在单调递增,所以所以,解得故选D【点睛】在比较大小或解不等式时,灵活运用函数的单调性以及常数和对指数之间的转化12、C【解析】根据用户缴纳的金额判定全年用水量少于260,利用第二档的收费方式计算即可.【详解】若该用户全年用水量为260,则应缴纳元,所以该户家庭的全年用水量少于260,设该户家庭全年用水量为x,则应缴纳元,解得.故选:C二、选择题(本大题共4小题,每小题5分,共20分,将答案写在答题卡上.)13、32【解析】在正四棱锥的高和斜高所在的直角三角形中计算出斜高后,根据三角形的面积公式即可求出侧面积.【详解】因为正四棱锥的底面边长为4cm,高与斜高的夹角为,所以斜高为cm,所以该正四棱锥的侧面积等于cm2故答案为:32.【点睛】本题考查了正棱锥的结构特征,考查了求正四棱锥的侧面积,属于基础题.14、【解析】根据幂函数定义求出值,再根据单调性确定结果【详解】由题意,解得或,又函数在区间上单调递减,则,∴故答案为:15、【解析】先分别求出两条直线的斜率,再利用两条直线垂直的充要条件是斜率乘积等于,即可求出结果【详解】直线的斜率,直线的斜率,且两直线与互相垂直,,,解得,故答案为【点睛】本题主要考查两直线垂直的充要条件,属于基础题.在两条直线的斜率都存在的条件下,两条直线垂直的充要条件是斜率乘积等于16、【解析】设正方体的棱长为x,则=36π,解得x=故答案为三、解答题(本大题共6个小题,共70分。解答时要求写出必要的文字说明、证明过程或演算步骤。)17、(1)最小正周期为,;(2),.【解析】利用正余弦的二倍角公式和辅助角公式将函数解析式化简,再利用正弦函数的周期性、单调性,即可得出结论.利用正弦函数图象的对称性,即可得图象的对称轴【详解】函数,故函数的最小正周期为,令,求得,故函数的减区间为,令,求得,,故函数的图象的对称轴为,【点睛】本题主要考查三角恒等变换,正弦函数的周期性、单调性,以及图象的对称性,属于中档题18、(1)a=1或a=-1(2)①fx在R【解析】(1)依题意可得fx(2)①根据复合函数的单调性判断可得;②根据函数的单调性与奇偶性可得sin2x+cosx<2m-3在R上恒成立,由【小问1详解】解:因为函数fx所以fx+f(-x)=0,即可得1+x2+ax则(1-a2)x2【小问2详解】①因为a>0,所以a=1.函数fx=ln因为y=1+x2+x与y=ln②对任意实数x,f(sin2x+由①知函数fx在R可得sin2x+cos因为sin2所以2m-3>54于是正整数m的最小值为319、(1);(2).【解析】(1)根据给定条件依次计算出,即可作答.(2)由(1)求出函数的解析式,再探讨在上的性质,结合图象即可作答.【小问1详解】因图像的相邻两条对称轴之间的距离为,则周期,解得,又,即,而,即,则,即,所以函数的解析式.【小问2详解】依题意,,当时,,而函数在上递增,在上递减,由得,由得,因此,函数在上单调递增,函数值从增到2,在上单调递减,函数值从2减到1,又是图象的一条对称轴,直线与函数在上的图象有两个公共点,当且仅当,如图,于是得方程在上有两个不相等的实数解时,当且仅当,所以实数m的取值范围.20、(1);(2)【解析】(1)由题意列出不等式组,令,求出对称轴,若在区间上有解,则解不等式即可求得k的范围;(2)由韦达定理计算得,利用指数函数单调性解不等式,化简得,令,求出函数在区间上的值域从而求得m的取值范围.【详解】(1)由题意知有解,则有解,①③成立时,②显然成立,因此令,对称轴为:当时,在区间上单调递减,在区间上单调递增,因此若在区间上有解,则,解得,又,则,k得最小值为;(2)由题意知是方程的两根,则,,联立解得,解得,所以在定义域内单调递减,由可得对任意的恒成立,化简得,令,,对成立,所以在区间上单调递减,,所以【点睛】本题考查函数与方程,二次函数的图像与性质,考查韦达定理,求解指数型不等式,导数证明不等式,属于较难题.21、(Ⅰ){3,1}(Ⅱ)p=6,q=9【解析】(Ⅰ)可求出B={-2,3},根据A∪B={-2,1,3},A∩B={3},即可求出集合A;(Ⅱ)根据条件∅AB即可得出A={-2},或{3},再根据p+q>0即可求出p,q的值【详解】(Ⅰ)B={-2,3};∵A∪B={-2,1,3},A∩B={3};∴A={3,1};(Ⅱ)∵∅AB;∴A={-2},或A={3};
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024搬家服务合同模板含搬家服务增值套餐3篇
- 2024年度三方创业贷款合同范本参考3篇
- 2024年度私人产权数据中心买卖合同范本2篇
- 2024年新型环保通风排烟系统安装与绿色建筑认证合同3篇
- 2024年中国迷你车市场调查研究报告
- 第3课欢欢喜喜庆国庆第二课时教学实录-2023-2024学年道德与法治二年级上册统编版
- 2024年度社区养老项目风险管理与应急预案合同3篇
- 2024年度绿色能源开发与应用合作协议2篇
- 2024年摄影艺术展览合作合同3篇
- 2024年版:离婚案件未成年人抚养权判定合同(含心理辅导)
- 国家开放大学电大《建筑制图基础》机考三套标准题库及答案3
- 降低故障工单回复不合格率
- 可涂色简笔画打印(共20页)
- 灯光架介绍及使用说明
- 十一学校行动纲要
- GB 1886.6-2016 食品安全国家标准 食品添加剂 硫酸钙(高清版)
- 关于房屋征收及土地收储过程中的税收政策(仅供参考)
- 唯一住房补贴申请书(共2页)
- 单面多轴钻孔组合机床动力滑台液压系统课程设计
- 中医养生脾胃为先PPT文档
- 门窗工程成品保护方案(附图)
评论
0/150
提交评论