版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年高一上数学期末模拟试卷注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确答案涂在答题卡上.)1.酒驾是严重危害交通安全的违法行为.根据国家有关规定:驾驶人血液中的酒精含量大于(或等于)毫克/毫升,小于毫克/毫升的情况下驾驶机动车属于饮酒驾车;含量大于(或等于)毫克/毫升的情况下驾驶机动车属于醉酒驾车.假设某驾驶员一天晚上点钟喝了一定量的酒后,其血液中酒精含量上升到毫克/毫升.如果在停止喝酒后,他血液中酒精含量以每小时的速度减少,则他次日上午最早()点(结果取整数)开车才不构成酒驾.(参考数据:,)A. B.C. D.2.已知集合,且,则的值可能为()A B.C.0 D.13.已知某几何体的三视图如图所示,根据图中标出的尺寸单位:,可得这个几何体得体积是A. B.C.2 D.44.函数是A.最小正周期为的奇函数B.最小正周期为的奇函数C.最小正周期为的偶函数D.最小正周期为的偶函数5.已知圆锥的底面半径为,且它的侧面开展图是一个半圆,则这个圆锥的体积为()A. B.C. D.6.已知函数,若图象过点,则的值为()A. B.2C. D.7.将函数的图象先向左平移,然后将所得图象上所有的点的横坐标变为原来的倍(纵坐标不变),则所得到的图象对应的函数解析式为A. B.C. D.8.若,且,则的值是A. B.C. D.9.我国在2020年9月22日在联合国大会提出,二氧化碳排放力争于2030年前实现碳达峰,争取在2060年前实现碳中和.为了响应党和国家的号召,某企业在国家科研部门的支持下,进行技术攻关:把二氧化碳转化为一种可利用的化工产品,经测算,该技术处理总成本y(单位:万元)与处理量x(单位:吨)之间的函数关系可近似表示为,当处理量x等于多少吨时,每吨的平均处理成本最少()A.120 B.200C.240 D.40010.已知函数f(x)=(a∈R),若函数f(x)在R上有两个零点,则a的取值范围是()A.(-∞,-1) B.(-∞,1)C.(-1,0) D.[-1,0)11.如图,摩天轮上一点在时刻距离地面的高度满足,,,,已知某摩天轮的半径为50米,点距地面的高度为60米,摩天轮做匀速运动,每10分钟转一圈,点的起始位置在摩天轮的最低点,则(米)关于(分钟)的解析式为()A.() B.()C.() D.()12.一个扇形的弧长与面积都是5,则这个扇形圆心角的弧度数为A. B.C. D.二、选择题(本大题共4小题,每小题5分,共20分,将答案写在答题卡上.)13.已知函数在区间是单调递增函数,则实数的取值范围是______14.如图,点为锐角的终边与单位圆的交点,逆时针旋转得,逆时针旋转得逆时针旋转得,则__________,点的横坐标为_________15.若直线与互相垂直,则点到轴的距离为__________16.已知,则__________.三、解答题(本大题共6个小题,共70分。解答时要求写出必要的文字说明、证明过程或演算步骤。)17.已知等差数列满足,前项和.(1)求的通项公式(2)设等比数列满足,,求的通项公式及的前项和.18.已知函数(1)求最小正周期;(2)求的单调递减区间;(3)当时,求的最小值及取得最小值时的值19.在中,角的对边分别为,的面积为,已知,,(1)求值;(2)判断的形状并求△的面积20.某企业为努力实现“碳中和”目标,计划从明年开始,通过替换清洁能源减少碳排放量,每年减少的碳排放量占上一年的碳排放量的比例均为,并预计年后碳排放量恰好减少为今年碳排放量的一半.(1)求的值;(2)若某一年的碳排放量为今年碳排放量的,按照计划至少再过多少年,碳排放量不超过今年碳排放量的?21.已知点A、B、C的坐标分别为、、,.(1)若,求角的值;(2)若,求的值.22.已知方程(1)若此方程表示圆,求的取值范围;(2)若此方程表示圆,且点在圆上,求过点的圆的切线方程
参考答案一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确答案涂在答题卡上.)1、D【解析】根据题意可得不等式,解不等式可求得,由此可得结论.【详解】假设经过小时后,驾驶员开车才不构成酒驾,则,即,,则,,次日上午最早点,该驾驶员开车才不构成酒驾.故选:D.2、C【解析】化简集合得范围,结合判断四个选项即可.【详解】集合,四个选项中,只有,故选:C【点睛】本题考查元素与集合的关系,属于基础题3、B【解析】先根据三视图得到几何体的形状,然后再根据条件中的数据求得几何体的体积【详解】由三视图可知该几何体是一个以俯视图为底面的四棱锥,如下图中的四棱锥由题意得其底面面积,高,故几何体的体积故选B【点睛】由三视图还原几何体的方法(1)还原后的几何体一般为较熟悉的柱、锥、台、球的组合体(2)注意图中实、虚线,实际是原几何体中的可视线与被遮挡线(3)想象原形,并画出草图后进行三视图还原,把握三视图和几何体之间的关系,与所给三视图比较,通过调整准确画出原几何体4、C【解析】根据题意,由于函数是,因此排除线线A,B,然后对于选项C,D,由于正弦函数周期为,那么利用图象的对称性可知,函数的周期性为,故选C.考点:函数的奇偶性和周期性点评:解决的关键是根据已知函数解析式俩分析确定奇偶性,那么同时结合图像的变换来得到周期,属于基础题5、A【解析】半径为的半径卷成一圆锥,则圆锥的母线长为,设圆锥的底面半径为,则,即,∴圆锥的高,∴圆锥的体积,所以的选项是正确的6、B【解析】分析】将代入求得,进而可得的值.【详解】因为函数的图象过点,所以,则,所以,,故选:B.7、C【解析】把原函数解析式中的换成,得到y=sin2x+π6-π3的图象,再把的系数变成原来的【详解】将函数y=sin2x-π3的图象先向左平移,得到然后将所得图象上所有的点的横坐标变为原来的2倍(纵坐标不变),得到y=sin1故选:C8、A【解析】由,则,考点:同角间基本关系式9、D【解析】先根据题意求出每吨的平均处理成本与处理量之间的函数关系,然后分和分析讨论求出其最小值即可【详解】由题意得二氧化碳每吨的平均处理成本为,当时,,当时,取得最小值240,当时,,当且仅当,即时取等号,此时取得最小值200,综上,当每月得理量为400吨时,每吨的平均处理成本最低为200元,故选:D10、D【解析】当x>0时,f(x)有一个零点,故当x≤0时只有一个实根,变量分离后进行计算可得答案.【详解】当x>0时,f(x)=3x-1有一个零点x=.因此当x≤0时,f(x)=ex+a=0只有一个实根,∴a=-ex(x≤0),函数y=-ex单调递减,则-1≤a<0.故选:D【点睛】本题考查由函数零点个数确定参数的取值,考查指数函数的性质,属于基础题.11、B【解析】根据给定信息,依次计算,再代入即可作答.【详解】因函数最大值为110,最小值为10,因此有,解得,而函数的周期为10,即,则,又当时,,则,而,解得,所以.故选:B12、D【解析】,又,故选D考点:扇形弧长公式二、选择题(本大题共4小题,每小题5分,共20分,将答案写在答题卡上.)13、【解析】求出二次函数的对称轴,即可得的单增区间,即可求解.【详解】函数的对称轴是,开口向上,若函数在区间是单调递增函数,则,故答案为:14、①.##0.96②.【解析】由终边上的点得,,应用二倍角正弦公式求,根据题设描述知在的终边上,结合差角余弦公式求其余弦值即可得横坐标.【详解】由题设知:,,∴,所在角为,则,∴点的横坐标为.故答案为:,.15、或.【解析】分析:由题意首先求得实数m的值,然后求解距离即可.详解:由直线垂直的充分必要条件可得:,即:,解得:,,当时点到轴的距离为0,当时点到轴的距离为5,综上可得:点到轴的距离为或.点睛:本题主要考查直线垂直的充分必要条件,分类讨论的数学思想等知识,意在考查学生的转化能力和计算求解能力.16、3【解析】由同角三角函数商数关系及已知等式可得,应用诱导公式有,即可求值.【详解】由题设,,可得,∴.故答案为:3三、解答题(本大题共6个小题,共70分。解答时要求写出必要的文字说明、证明过程或演算步骤。)17、(1);(2),【解析】(1)设的公差为,则由已知条件得,化简得解得故通项公式,即(2)由(1)得.设的公比为,则,从而故的前项和18、(1)(2)(3)最小值为,【解析】(1)利用三角恒等变换化简函数解析式为,利用正弦型函数的周期公式可求得函数的最小正周期;(2)解不等式可得出函数的单调递减区间;(3)由可求得的取值范围,结合正弦型函数的基本性质可求得的最小值及其对应的值.【小问1详解】解:由,则的最小正周期为【小问2详解】解:由,,则,,则,,所以的单调递减区间为【小问3详解】解:当时,,当时,即当时,函数取最小值,且.19、(1);(2)是等腰三角形,其面积为【解析】(1)由结合正弦面积公式及余弦定理得到,进而得到结果;(2)由结合内角和定理可得分两类讨论即可.试题解析:(1),由余弦定理得,(2)即或(ⅰ)当时,由第(1)问知,是等腰三角形,(ⅱ)当时,由第(1)问知,又,矛盾,舍.综上是等腰三角形,其面积为点睛:解三角形问题,多为边和角的求值问题,这就需要根据正、余弦定理结合已知条件灵活转化边和角之间的关系,从而达到解决问题的目的.其基本步骤是:第一步:定条件,即确定三角形中已知和所求,在图形中标出来,然后确定转化的方向.第二步:定工具,即根据条件和所求合理选择转化的工具,实施边角之间的互化.第三步:求结果.20、(1);(2)年.【解析】(1)设今年碳排放量为,则由题意得,从而可求出的值;(2)设再过年碳排放量不超过今年碳排放量的,则,再把代入解关于的不等式即可得答案【详解】解:设今年碳排放量为.(1)由题意得,所以,得.(2)设再过年碳排放量不超过今年碳排放量,则,将代入得,即,得.故至少再过年,碳排放量不超过今年碳排放量的.21、(1);(2)【解析】(1)根据两向量的模相等,利用两点间的距离公式建立等式求得的值,根据的范围求得;(2)根据向量的基本运算根据,求得和的关系式,然后用同角和与差的关系可得到,再由化简可得,进而可确定答案【
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 五年级科学下册沉和浮第1课物体在水中是沉还是浮教学建议教科版
- 2024-2025学年高中数学第1章导数及其应用1.2.1常见函数的导数课时素养评价含解析苏教版选修2-2
- 2024年铸造造型材料合作协议书
- 盐城师范学院《中学历史课程标准与教材分析》2021-2022学年第一学期期末试卷
- 2024年成分分析产品项目发展计划
- 2024年油品脱砷特种催化剂项目建议书
- 2024个人入股合作合同范本
- 冀教版四年级上册数学第六单元 认识更大的数 测试卷各版本
- 2025年中国纸尿裤行业市场动态分析、发展方向及投资前景分析报告
- 出租房屋安全保证协议(2024年度)
- 档案工作管理情况自查表
- 竖向设计图课件
- WinCCflexible的传送操作HMI设备设置入门
- 三宝屯污水处理厂三期改扩建工程项目环境影响报告
- 大学生创新创业教育智慧树知到答案章节测试2023年湖南铁路科技职业技术学院
- 机电一体化说专业比赛
- (国开电大)专科《市场营销学》网上形考任务4试题及答案
- 2023年海口市事业单位招聘考试《公共基础知识》题库及答案解析
- 《航空运输地理》课程标准
- pcs-9611d-x说明书国内中文标准版
- 皇城相府(精美PPT)
评论
0/150
提交评论