版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2023高考数学模拟试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.是边长为的等边三角形,、分别为、的中点,沿把折起,使点翻折到点的位置,连接、,当四棱锥的外接球的表面积最小时,四棱锥的体积为()A. B. C. D.2.阅读名著,品味人生,是中华民族的优良传统.学生李华计划在高一年级每周星期一至星期五的每天阅读半个小时中国四大名著:《红楼梦》、《三国演义》、《水浒传》及《西游记》,其中每天阅读一种,每种至少阅读一次,则每周不同的阅读计划共有()A.120种 B.240种 C.480种 D.600种3.已知(为虚数单位,为的共轭复数),则复数在复平面内对应的点在().A.第一象限 B.第二象限 C.第三象限 D.第四象限4.设集合A={y|y=2x﹣1,x∈R},B={x|﹣2≤x≤3,x∈Z},则A∩B=()A.(﹣1,3] B.[﹣1,3] C.{0,1,2,3} D.{﹣1,0,1,2,3}5.已知双曲线,点是直线上任意一点,若圆与双曲线的右支没有公共点,则双曲线的离心率取值范围是().A. B. C. D.6.费马素数是法国大数学家费马命名的,形如的素数(如:)为费马索数,在不超过30的正偶数中随机选取一数,则它能表示为两个不同费马素数的和的概率是()A. B. C. D.7.已知正项等比数列满足,若存在两项,,使得,则的最小值为().A.16 B. C.5 D.48.若双曲线的离心率,则该双曲线的焦点到其渐近线的距离为()A. B.2 C. D.19.数列{an},满足对任意的n∈N+,均有an+an+1+an+2为定值.若a7=2,a9=3,a98=4,则数列{an}的前100项的和S100=()A.132 B.299 C.68 D.9910.已知,则不等式的解集是()A. B. C. D.11.对某两名高三学生在连续9次数学测试中的成绩(单位:分)进行统计得到折线图,下面是关于这两位同学的数学成绩分析.①甲同学的成绩折线图具有较好的对称性,故平均成绩为130分;②根据甲同学成绩折线图提供的数据进行统计,估计该同学平均成绩在区间110,120内;③乙同学的数学成绩与测试次号具有比较明显的线性相关性,且为正相关;④乙同学连续九次测验成绩每一次均有明显进步.其中正确的个数为()A.4 B.3 C.2 D.112.已知在中,角的对边分别为,若函数存在极值,则角的取值范围是()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.一个袋中装着标有数字1,2,3,4,5的小球各2个,从中任意摸取3个小球,每个小球被取出的可能性相等,则取出的3个小球中数字最大的为4的概率是__.14.函数与的图象上存在关于轴的对称点,则实数的取值范围为______.15.已知复数(为虚数单位),则的共轭复数是_____,_____.16.某外商计划在个候选城市中投资个不同的项目,且在同一个城市投资的项目不超过个,则该外商不同的投资方案有____种.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知函数.(1)若,,求函数的单调区间;(2)时,若对一切恒成立,求a的取值范围.18.(12分)已知(1)当时,判断函数的极值点的个数;(2)记,若存在实数,使直线与函数的图象交于不同的两点,求证:.19.(12分)如图,湖中有一个半径为千米的圆形小岛,岸边点与小岛圆心相距千米,为方便游人到小岛观光,从点向小岛建三段栈道,,,湖面上的点在线段上,且,均与圆相切,切点分别为,,其中栈道,,和小岛在同一个平面上.沿圆的优弧(圆上实线部分)上再修建栈道.记为.用表示栈道的总长度,并确定的取值范围;求当为何值时,栈道总长度最短.20.(12分)已知,函数有最小值7.(1)求的值;(2)设,,求证:.21.(12分)在平面直角坐标系xOy中,抛物线C:,以坐标原点O为极点,x轴的正半轴为极轴建立极坐标系,直线l的极坐标方程为().(1)求抛物线C的极坐标方程;(2)若抛物线C与直线l交于A,B两点,求的值.22.(10分)2019年12月以来,湖北省武汉市持续开展流感及相关疾病监测,发现多起病毒性肺炎病例,均诊断为病毒性肺炎/肺部感染,后被命名为新型冠状病毒肺炎(CoronaVirusDisease2019,COVID—19),简称“新冠肺炎”.下图是2020年1月15日至1月24日累计确诊人数随时间变化的散点图.为了预测在未釆取强力措施下,后期的累计确诊人数,建立了累计确诊人数y与时间变量t的两个回归模型,根据1月15日至1月24日的数据(时间变量t的值依次1,2,…,10)建立模型和.(1)根据散点图判断,与哪一个适宜作为累计确诊人数y与时间变量t的回归方程类型?(给出判断即可,不必说明理由)(2根据(1)的判断结果及附表中数据,建立y关于x的回归方程;(3)以下是1月25日至1月29日累计确诊人数的真实数据,根据(2)的结果回答下列问题:时间1月25日1月26日1月27日1月28日1月29日累计确诊人数的真实数据19752744451559747111(ⅰ)当1月25日至1月27日这3天的误差(模型预测数据与真实数据差值的绝对值与真实数据的比值)都小于0.1则认为模型可靠,请判断(2)的回归方程是否可靠?(ⅱ)2020年1月24日在人民政府的强力领导下,全国人民共同采取了强力的预防“新冠肺炎”的措施,若采取措施5天后,真实数据明显低于预测数据,则认为防护措施有效,请判断预防措施是否有效?附:对于一组数据(,,……,,其回归直线的斜率和截距的最小二乘估计分别为,.参考数据:其中,.5.539019385764031525154700100150225338507
2023学年模拟测试卷参考答案(含详细解析)一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.D【答案解析】
首先由题意得,当梯形的外接圆圆心为四棱锥的外接球球心时,外接球的半径最小,通过图形发现,的中点即为梯形的外接圆圆心,也即四棱锥的外接球球心,则可得到,进而可根据四棱锥的体积公式求出体积.【题目详解】如图,四边形为等腰梯形,则其必有外接圆,设为梯形的外接圆圆心,当也为四棱锥的外接球球心时,外接球的半径最小,也就使得外接球的表面积最小,过作的垂线交于点,交于点,连接,点必在上,、分别为、的中点,则必有,,即为直角三角形.对于等腰梯形,如图:因为是等边三角形,、、分别为、、的中点,必有,所以点为等腰梯形的外接圆圆心,即点与点重合,如图,,所以四棱锥底面的高为,.故选:D.【答案点睛】本题考查四棱锥的外接球及体积问题,关键是要找到外接球球心的位置,这个是一个难点,考查了学生空间想象能力和分析能力,是一道难度较大的题目.2.B【答案解析】
首先将五天进行分组,再对名著进行分配,根据分步乘法计数原理求得结果.【题目详解】将周一至周五分为组,每组至少天,共有:种分组方法;将四大名著安排到组中,每组种名著,共有:种分配方法;由分步乘法计数原理可得不同的阅读计划共有:种本题正确选项:【答案点睛】本题考查排列组合中的分组分配问题,涉及到分步乘法计数原理的应用,易错点是忽略分组中涉及到的平均分组问题.3.D【答案解析】
设,由,得,利用复数相等建立方程组即可.【题目详解】设,则,所以,解得,故,复数在复平面内对应的点为,在第四象限.故选:D.【答案点睛】本题考查复数的几何意义,涉及到共轭复数的定义、复数的模等知识,考查学生的基本计算能力,是一道容易题.4.C【答案解析】
先求集合A,再用列举法表示出集合B,再根据交集的定义求解即可.【题目详解】解:∵集合A={y|y=2x﹣1,x∈R}={y|y>﹣1},B={x|﹣2≤x≤3,x∈Z}={﹣2,﹣1,0,1,2,3},∴A∩B={0,1,2,3},故选:C.【答案点睛】本题主要考查集合的交集运算,属于基础题.5.B【答案解析】
先求出双曲线的渐近线方程,可得则直线与直线的距离,根据圆与双曲线的右支没有公共点,可得,解得即可.【题目详解】由题意,双曲线的一条渐近线方程为,即,∵是直线上任意一点,则直线与直线的距离,∵圆与双曲线的右支没有公共点,则,∴,即,又故的取值范围为,故选:B.【答案点睛】本题主要考查了直线和双曲线的位置关系,以及两平行线间的距离公式,其中解答中根据圆与双曲线的右支没有公共点得出是解答的关键,着重考查了推理与运算能力,属于基础题.6.B【答案解析】
基本事件总数,能表示为两个不同费马素数的和只有,,,共有个,根据古典概型求出概率.【题目详解】在不超过的正偶数中随机选取一数,基本事件总数能表示为两个不同费马素数的和的只有,,,共有个则它能表示为两个不同费马素数的和的概率是本题正确选项:【答案点睛】本题考查概率的求法,考查列举法解决古典概型问题,是基础题.7.D【答案解析】
由,可得,由,可得,再利用“1”的妙用即可求出所求式子的最小值.【题目详解】设等比数列公比为,由已知,,即,解得或(舍),又,所以,即,故,所以,当且仅当时,等号成立.故选:D.【答案点睛】本题考查利用基本不等式求式子和的最小值问题,涉及到等比数列的知识,是一道中档题.8.C【答案解析】
根据双曲线的解析式及离心率,可求得的值;得渐近线方程后,由点到直线距离公式即可求解.【题目详解】双曲线的离心率,则,,解得,所以焦点坐标为,所以,则双曲线渐近线方程为,即,不妨取右焦点,则由点到直线距离公式可得,故选:C.【答案点睛】本题考查了双曲线的几何性质及简单应用,渐近线方程的求法,点到直线距离公式的简单应用,属于基础题.9.B【答案解析】
由为定值,可得,则是以3为周期的数列,求出,即求.【题目详解】对任意的,均有为定值,,故,是以3为周期的数列,故,.故选:.【答案点睛】本题考查周期数列求和,属于中档题.10.A【答案解析】
构造函数,通过分析的单调性和对称性,求得不等式的解集.【题目详解】构造函数,是单调递增函数,且向左移动一个单位得到,的定义域为,且,所以为奇函数,图像关于原点对称,所以图像关于对称.不等式等价于,等价于,注意到,结合图像关于对称和单调递增可知.所以不等式的解集是.故选:A【答案点睛】本小题主要考查根据函数的单调性和对称性解不等式,属于中档题.11.C【答案解析】
利用图形,判断折线图平均分以及线性相关性,成绩的比较,说明正误即可.【题目详解】①甲同学的成绩折线图具有较好的对称性,最高130分,平均成绩为低于130分,①错误;②根据甲同学成绩折线图提供的数据进行统计,估计该同学平均成绩在区间[110,120]内,②正确;③乙同学的数学成绩与测试次号具有比较明显的线性相关性,且为正相关,③正确;④乙同学在这连续九次测验中第四次、第七次成绩较上一次成绩有退步,故④不正确.故选:C.【答案点睛】本题考查折线图的应用,线性相关以及平均分的求解,考查转化思想以及计算能力,属于基础题.12.C【答案解析】
求出导函数,由有不等的两实根,即可得不等关系,然后由余弦定理可及余弦函数性质可得结论.【题目详解】,.若存在极值,则,又.又.故选:C.【答案点睛】本题考查导数与极值,考查余弦定理.掌握极值存在的条件是解题关键.二、填空题:本题共4小题,每小题5分,共20分。13.【答案解析】
由题,得满足题目要求的情况有,①有一个数字4,另外两个数字从1,2,3里面选和②有两个数字4,另外一个数字从1,2,3里面选,由此即可得到本题答案.【题目详解】满足题目要求的情况可以分成2大类:①有一个数字4,另外两个数字从1,2,3里面选,一共有种情况;②有两个数字4,另外一个数字从1,2,3里面选,一共有种情况,又从中任意摸取3个小球,有种情况,所以取出的3个小球中数字最大的为4的概率.故答案为:【答案点睛】本题主要考查古典概型与组合的综合问题,考查学生分析问题和解决问题的能力.14.【答案解析】
先求得与关于轴对称的函数,将问题转化为与的图象有交点,即方程有解.对分成三种情况进行分类讨论,由此求得实数的取值范围.【题目详解】因为关于轴对称的函数为,因为函数与的图象上存在关于轴的对称点,所以与的图象有交点,方程有解.时符合题意.时转化为有解,即,的图象有交点,是过定点的直线,其斜率为,若,则函数与的图象必有交点,满足题意;若,设,相切时,切点的坐标为,则,解得,切线斜率为,由图可知,当,即时,,的图象有交点,此时,与的图象有交点,函数与的图象上存在关于轴的对称点,综上可得,实数的取值范围为.故答案为:【答案点睛】本小题主要考查利用导数求解函数的零点以及对称性,函数与方程等基础知识,考查学生分析问题,解决问题的能力,推理与运算求解能力,转化与化归思想和应用意识.15.【答案解析】
直接利用复数的乘法运算化简,从而得到复数的共轭复数和的模.【题目详解】,则复数的共轭复数为,且.故答案为:;.【答案点睛】本题考查了复数代数形式的乘除运算,考查了复数的基本概念,是基础的计算题.16.60【答案解析】试题分析:每个城市投资1个项目有种,有一个城市投资2个有种,投资方案共种.考点:排列组合.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(1)单调递减区间为,单调递增区间为;(2)【答案解析】
(1)求导,根据导数与函数单调性关系即可求出.(2)解法一:分类讨论:当时,观察式子可得恒成立;当时,利用导数判断函数为单调递增,可知;当时,令,由,,根据零点存在性定理可得,进而可得在上,单调递减,即不满足题意;解法二:通过分离参数可知条件等价于恒成立,进而记,问题转化为求在上的最小值问题,通过二次求导,结合洛比达法则计算可得结论.【题目详解】(1)当,,,,令,解得,当时,,当时,,在上单调递减,在上单调递增.(2)解法一:当时,函数,若时,此时对任意都有,所以恒成立;若时,对任意都有,,所以,所以在上为增函数,所以,即时满足题意;若时,令,则,所以在上单调递增,,,可知,一定存在使得,且当时,,所以在上,单调递减,从而有时,,不满足题意;综上可知,实数a的取值范围为.解法二:当时,函数,又当时,,对一切恒成立等价于恒成立,记,其中,则,令,则,在上单调递增,,恒成立,从而在上单调递增,,由洛比达法则可知,,,解得.实数a的取值范围为.【答案点睛】本题考查利用导数研究函数的单调性与不等式恒成立问题,考查了分类与整合的解题思想,涉及分离参数法等技巧、涉及到洛比达法则等知识,注意解题方法的积累,属于难题.18.(1)没有极值点;(2)证明见解析【答案解析】
(1)求导可得,再求导可得,则在递增,则,从而在递增,即可判断;(2)转化问题为存在且,使,可得,由(1)可知,即,则,整理可得,则,设,则可整理为,设,利用导函数可得,即可求证.【题目详解】(1)当时,,,所以在递增,所以,所以在递增,所以函数没有极值点.(2)由题,,若存在实数,使直线与函数的图象交于不同的两点,即存在且,使.由可得,,由(1)可知,可得.,所以,即,下面证明,只需证明:,令,则证,即.设,那么,所以,所以,即【答案点睛】本题考查利用导函数求函数的极值点,考查利用导函数解决双变量问题,考查运算能力与推理论证能力.19.,;当时,栈道总长度最短.【答案解析】
连,,由切线长定理知:,,,,即,,则,,进而确定的取值范围;根据求导得,利用增减性算出,进而求得取值.【题目详解】解:连,,由切线长定理知:,,,又,,故,则劣弧的长为,因此,优弧的长为,又,故,,即,,所以,,,则;,,其中,,-0+单
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 课题申报参考:教育家精神融入公费师范生培养的实践模型与长效机制研究
- 课题申报参考:家庭综合能源系统优化运行及其干扰管理研究
- 2025年度个人快件运输合同范本(快递服务版)2篇
- 二零二五版龙门吊设备维修配件供应与库存管理合同4篇
- 影视作品2025年度海外发行合同3篇
- 2025年智能交通系统建设投资合同2篇
- 二手房买卖合同按揭贷款范文(2024版)
- 二零二五年度国际文化交流捐赠协议3篇
- 二零二五年度城市排水管网疏浚承包合同样本4篇
- 2025年新能源汽车电池更换服务合同模板4篇
- 广东省佛山市2025届高三高中教学质量检测 (一)化学试题(含答案)
- 人教版【初中数学】知识点总结-全面+九年级上册数学全册教案
- 2024-2025学年人教版七年级英语上册各单元重点句子
- 公司结算资金管理制度
- 2024年小学语文教师基本功测试卷(有答案)
- 项目可行性研究报告评估咨询管理服务方案1
- 5岁幼儿数学练习题
- 2024年全国体育单招英语考卷和答案
- 食品安全管理制度可打印【7】
- 2024年九年级语文中考名著阅读《儒林外史》考前练附答案
- 农村个人房屋抵押借款合同
评论
0/150
提交评论