版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2023高考数学模拟试卷考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知复数满足,则=()A. B.C. D.2.已知函数,则()A.2 B.3 C.4 D.53.已知复数z=(1+2i)(1+ai)(a∈R),若z∈R,则实数a=()A. B. C.2 D.﹣24.设函数,当时,,则()A. B. C.1 D.5.相传黄帝时代,在制定乐律时,用“三分损益”的方法得到不同的竹管,吹出不同的音调.如图的程序是与“三分损益”结合的计算过程,若输入的的值为1,输出的的值为()A. B. C. D.6.为了研究国民收入在国民之间的分配,避免贫富过分悬殊,美国统计学家劳伦茨提出了著名的劳伦茨曲线,如图所示.劳伦茨曲线为直线时,表示收入完全平等.劳伦茨曲线为折线时,表示收入完全不平等.记区域为不平等区域,表示其面积,为的面积,将称为基尼系数.对于下列说法:①越小,则国民分配越公平;②设劳伦茨曲线对应的函数为,则对,均有;③若某国家某年的劳伦茨曲线近似为,则;④若某国家某年的劳伦茨曲线近似为,则.其中正确的是:A.①④ B.②③ C.①③④ D.①②④7.已知函数,若所有点,所构成的平面区域面积为,则()A. B. C.1 D.8.二项式的展开式中,常数项为()A. B.80 C. D.1609.已知集合,,若,则()A. B. C. D.10.两圆和相外切,且,则的最大值为()A. B.9 C. D.111.已知集合M={x|﹣1<x<2},N={x|x(x+3)≤0},则M∩N=()A.[﹣3,2) B.(﹣3,2) C.(﹣1,0] D.(﹣1,0)12.在平面直角坐标系中,经过点,渐近线方程为的双曲线的标准方程为()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.如图是九位评委打出的分数的茎叶统计图,去掉一个最高分和一个最低分后,所剩数据的平均分为_______.14.设函数在区间上的值域是,则的取值范围是__________.15.在中,、的坐标分别为,,且满足,为坐标原点,若点的坐标为,则的取值范围为__________.16.内角,,的对边分别为,,,若,则__________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)在直角坐标系中,已知直线的直角坐标方程为,曲线的参数方程为(为参数),以直角坐标系原点为极点,轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为.(1)求曲线和直线的极坐标方程;(2)已知直线与曲线、相交于异于极点的点,若的极径分别为,求的值.18.(12分)已知.(1)解关于x的不等式:;(2)若的最小值为M,且,求证:.19.(12分)某网络商城在年月日开展“庆元旦”活动,当天各店铺销售额破十亿,为了提高各店铺销售的积极性,采用摇号抽奖的方式,抽取了家店铺进行红包奖励.如图是抽取的家店铺元旦当天的销售额(单位:千元)的频率分布直方图.(1)求抽取的这家店铺,元旦当天销售额的平均值;(2)估计抽取的家店铺中元旦当天销售额不低于元的有多少家;(3)为了了解抽取的各店铺的销售方案,销售额在和的店铺中共抽取两家店铺进行销售研究,求抽取的店铺销售额在中的个数的分布列和数学期望.20.(12分)已知三点在抛物线上.(Ⅰ)当点的坐标为时,若直线过点,求此时直线与直线的斜率之积;(Ⅱ)当,且时,求面积的最小值.21.(12分)已知.(Ⅰ)若,求不等式的解集;(Ⅱ),,,求实数的取值范围.22.(10分)已知函数.(1)当a=2时,求不等式的解集;(2)设函数.当时,,求的取值范围.
2023学年模拟测试卷参考答案(含详细解析)一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.B【答案解析】
利用复数的代数运算法则化简即可得到结论.【题目详解】由,得,所以,.故选:B.【答案点睛】本题考查复数代数形式的乘除运算,考查复数的基本概念,属于基础题.2.A【答案解析】
根据分段函数直接计算得到答案.【题目详解】因为所以.故选:.【答案点睛】本题考查了分段函数计算,意在考查学生的计算能力.3.D【答案解析】
化简z=(1+2i)(1+ai)=,再根据z∈R求解.【题目详解】因为z=(1+2i)(1+ai)=,又因为z∈R,所以,解得a=-2.故选:D【答案点睛】本题主要考查复数的运算及概念,还考查了运算求解的能力,属于基础题.4.A【答案解析】
由降幂公式,两角和的正弦公式化函数为一个角的一个三角函数形式,然后由正弦函数性质求得参数值.【题目详解】,时,,,∴,由题意,∴.故选:A.【答案点睛】本题考查二倍角公式,考查两角和的正弦公式,考查正弦函数性质,掌握正弦函数性质是解题关键.5.B【答案解析】
根据循环语句,输入,执行循环语句即可计算出结果.【题目详解】输入,由题意执行循环结构程序框图,可得:第次循环:,,不满足判断条件;第次循环:,,不满足判断条件;第次循环:,,满足判断条件;输出结果.故选:【答案点睛】本题考查了循环语句的程序框图,求输出的结果,解答此类题目时结合循环的条件进行计算,需要注意跳出循环的判定语句,本题较为基础.6.A【答案解析】
对于①,根据基尼系数公式,可得基尼系数越小,不平等区域的面积越小,国民分配越公平,所以①正确.对于②,根据劳伦茨曲线为一条凹向横轴的曲线,由图得,均有,可得,所以②错误.对于③,因为,所以,所以③错误.对于④,因为,所以,所以④正确.故选A.7.D【答案解析】
依题意,可得,在上单调递增,于是可得在上的值域为,继而可得,解之即可.【题目详解】解:,因为,,所以,在上单调递增,则在上的值域为,因为所有点所构成的平面区域面积为,所以,解得,故选:D.【答案点睛】本题考查利用导数研究函数的单调性,理解题意,得到是关键,考查运算能力,属于中档题.8.A【答案解析】
求出二项式的展开式的通式,再令的次数为零,可得结果.【题目详解】解:二项式展开式的通式为,令,解得,则常数项为.故选:A.【答案点睛】本题考查二项式定理指定项的求解,关键是熟练应用二项展开式的通式,是基础题.9.A【答案解析】
由,得,代入集合B即可得.【题目详解】,,,即:,故选:A【答案点睛】本题考查了集合交集的含义,也考查了元素与集合的关系,属于基础题.10.A【答案解析】
由两圆相外切,得出,结合二次函数的性质,即可得出答案.【题目详解】因为两圆和相外切所以,即当时,取最大值故选:A【答案点睛】本题主要考查了由圆与圆的位置关系求参数,属于中档题.11.C【答案解析】
先化简N={x|x(x+3)≤0}={x|-3≤x≤0},再根据M={x|﹣1<x<2},求两集合的交集.【题目详解】因为N={x|x(x+3)≤0}={x|-3≤x≤0},又因为M={x|﹣1<x<2},所以M∩N={x|﹣1<x≤0}.故选:C【答案点睛】本题主要考查集合的基本运算,还考查了运算求解的能力,属于基础题.12.B【答案解析】
根据所求双曲线的渐近线方程为,可设所求双曲线的标准方程为k.再把点代入,求得k的值,可得要求的双曲线的方程.【题目详解】∵双曲线的渐近线方程为设所求双曲线的标准方程为k.又在双曲线上,则k=16-2=14,即双曲线的方程为∴双曲线的标准方程为故选:B【答案点睛】本题主要考查用待定系数法求双曲线的方程,双曲线的定义和标准方程,以及双曲线的简单性质的应用,属于基础题.二、填空题:本题共4小题,每小题5分,共20分。13.1【答案解析】
写出茎叶图对应的所有的数,去掉最高分,最低分,再求平均分.【题目详解】解:所有的数为:77,78,82,84,84,86,88,93,94,共9个数,去掉最高分,最低分,剩下78,82,84,84,86,88,93,共7个数,平均分为,故答案为1.【答案点睛】本题考查茎叶图及平均数的计算,属于基础题.14..【答案解析】
配方求出顶点,作出图像,求出对应的自变量,结合函数图像,即可求解.【题目详解】,顶点为因为函数的值域是,令,可得或.又因为函数图象的对称轴为,且,所以的取值范围为.故答案为:.【答案点睛】本题考查函数值域,考查数形结合思想,属于基础题.15.【答案解析】
由正弦定理可得点在曲线上,设,则,将代入可得,利用二次函数的性质可得范围.【题目详解】解:由正弦定理得,则点在曲线上,设,则,,又,,因为,则,即的取值范围为.故答案为:.【答案点睛】本题考查双曲线的定义,考查向量数量积的坐标运算,考查学生计算能力,有一定的综合性,但难度不大.16.【答案解析】∵,∴,即,∴,∴.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(1),.(2)【答案解析】
(1)先将曲线的参数方程化为直角坐标方程,即可代入公式化为极坐标;根据直线的直角坐标方程,求得倾斜角,即可得极坐标方程.(2)将直线的极坐标方程代入曲线、可得,进而代入可得的值.【题目详解】(1)曲线的参数方程为(为参数),消去得,把,代入得,从而得的极坐标方程为,∵直线的直角坐标方程为,其倾斜角为,∴直线的极坐标方程为.(2)将代入曲线的极坐标方程分别得到,则.【答案点睛】本题考查了参数方程化为普通方程的方法,直角坐标方程化为极坐标方程的方法,极坐标的几何意义,属于中档题.18.(1);(2)证明见解析.【答案解析】
(1)分类讨论求解绝对值不等式即可;(2)由(1)中所得函数,求得最小值,再利用均值不等式即可证明.【题目详解】(1)当时,等价于,该不等式恒成立,当时,等价于,该不等式解集为,当时,等价于,解得,综上,或,所以不等式的解集为.(2),易得的最小值为1,即因为,,,所以,,,所以,当且仅当时等号成立.【答案点睛】本题考查利用分类讨论求解绝对值不等式,涉及利用均值不等式证明不等式,属综合中档题.19.(1)元;(2)32家;(3)分布列见解析;【答案解析】
(1)根据频率分布直方图求出各组频率,再由平均数公式,即可求解;(2)求出的频率即可;(3)中的个数的所有可能取值为,,,求出可能值的概率,得到分布列,由期望公式即可求解.【题目详解】(1)频率分布直方图销售额的平均值为千元,所以销售额的平均值为元;(2)不低于元的有家(3)销售额在的店铺有家,销售额在的店铺有家.选取两家,设销售额在的有家.则的所有可能取值为,,.,,所以的分布列为数学期望【答案点睛】本题考查应用频率分布直方图求平均数和频数,考查离散型随机变量的分布列和期望,属于基础题.20.(Ⅰ);(Ⅱ)16.【答案解析】
(Ⅰ)设出直线的方程并代入抛物线方程,利用韦达定理以及斜率公式,变形可得;(Ⅱ)利用,,的斜率,求得的坐标,,再用基本不等式求得的最小值,从而可得三角形的面积的最小值.【题目详解】解:(Ⅰ)设直线的方程为.联立方程组,得,,故,.所以;(Ⅱ)不妨设的三个顶点中的两个顶点在轴右侧(包括轴),设,,,的斜率为,又,则,①因为,所以②由①②得,,(且)从而当且仅当时取“”号,从而,所以面积的最小值为.【答案点睛】本题考查了直线与抛物线的综合,属于中档题.21.(Ⅰ);(Ⅱ).【答案解析】
(Ⅰ)利用零点分段讨论法把函数改写成分段函数的形式,分三种情况分别解不等式,然后取并集即可;(Ⅱ)利用绝对值三角不等式求出的最小值,利用均值不等式求出的最小值,结合题意,只需即可,解不等式即可求解.【题目详解】(Ⅰ)当时,,,或,或,或所以不等式的解集
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 保税区保洁员招聘合同
- 车站综合布线安装合同
- 2024年销售化妆品的工作总结
- 先兆流产的护理措施
- 外科业务学习计划
- 初中生 物理最重要的十个实验实验步骤和分析
- 河南省郑州市(2024年-2025年小学六年级语文)人教版课后作业(上学期)试卷及答案
- 信息技术对学前教育教学活动及幼儿生活的影响
- 多发性硬化(MS)诊断标准
- 幼儿园4月的安全会议记录
- 湖北省新中考语文现代文阅读技巧讲解与备考
- 幼儿园故事课件:《胸有成竹》
- 衣服破了我会补(导学案)-三年级上册劳动人教版
- (完整版)康复科管理制度
- 辽宁省沈阳市沈河区2023-2024学年数学四年级第一学期期末监测试题含答案
- 连云港市农商控股集团限公司2023年专业技术人员招聘上岸笔试历年难、易错点考题附带参考答案与详解
- 对越自卫反击战专题培训课件
- 人音版一年级上册《我有一只小羊羔》课件1
- 常用急救药品
- 内科主治医师讲义
- 小学生简笔画社团活动记录
评论
0/150
提交评论