版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
参考试卷、写出以下单词的中文意思(每小题0.5分,共10分)1accuracy11customize2actuator12definition3adjust13defuzzification4agent14deployment5algorithm15effector6analogy16entity7attribute17extract8backtrack18feedback9blockchain19finite10cluster20framework二、根据给出的中文意思,写出英文单词(每小题0.5分,共10分)1V.收集,搜集11n.神经元;神经细胞2adj.嵌入的,内置的12n.节点3n.指示器;指标13V.运转;操作4n.基础设施,基础架构14n.模式5V.合并;集成15V.察觉,发觉6n.解释器,解释程序16n.前提7n.迭代;循环17adj.程序的;过程的8n.库18n.回归9n.元数据19adj.健壮的,强健的;结实的10V.监视;控制;监测20V.筛选三、根据给出的短语,写出中文意思(每小题I分,共10分)dataobjectcybersecuritysmartmanufacturingclusteredsystemdatavisualizationopensourceanalyzetextcloudcomputingcomputationpowerobjectrecognition四、根据给出的中文意思,写出英文短语(每小题1分,共10分)数据结构 决策树 演绎推理 4贪婪最佳优先搜索隐臧模式,隐含模式知识挖掘 逻辑推理预测性维护搜索引擎 文本挖掘技术五、写出以下缩略语的完整形式和中文意思(每小题1分,共10分)缩略语 完整形式 中文意思 ANNARBFSCVDFSESIAKNNNLPVR六、阅读短文,回答问题(每小题2分,共10分)ArtificialNeuralNetwork(ANN)Anartificialneuralnetwork(ANN)isthepieceofacomputingsystemdesignedtosimulatethewaythehumanbrainanalyzesandprocessesinformation.Itisthefoundationofartificialintelligence(AI)andsolvesproblemsthatwouldproveimpossibleordifficultbyhumanorstatisticalstandards.ANNshaveself-learningcapabilitiesthatenablethemtoproducebetterresultsasmoredatabecomesavailable.Artificialneuralnetworksarebuiltlikethehumanbrain,withneuronnodesinterconnectedlikeaweb.Thehumanbrainhashundredsofbillionsofcellscalledneurons.Eachneuronismadeupofacellbodythatisresponsibleforprocessinginformationbycarryinginformationtowards(inputs)andaway(outputs)fromthebrain.AnANNhashundredsorthousandsofartificialneuronscalledprocessingunits,whichareinterconnectedbynodes.Theseprocessingunitsaremadeupofinputandoutputunits.Theinputunitsreceivevariousformsandstructuresofinformationbasedonaninternalweightingsystem,andtheneuralnetworkattemptstolearnabouttheinformationpresentedtoproduceoneoutputreport.Justlikehumansneedrulesandguidelinestocomeupwitharesultoroutput,ANNsalsouseasetoflearningrulescalledbackpropagation,anabbreviationforbackwardpropagationoferror,toperfecttheiroutputresults.AnANNinitiallygoesthroughatrainingphasewhereitlearnstorecognizepatternsindata,whethervisually,aurally,ortextually.Duringthissupervisedphase,thenetworkcomparesitsactualoutputproducedwithwhatitwasmeanttoproduce—thedesiredoutput.Thedifferencebetweenbothoutcomesisadjustedusingbackpropagation.Thismeansthatthenetworkworksbackward,goingfromtheoutputunittotheinputunitstoadjusttheweightofitsconnectionsbetweentheunitsuntilthedifferencebetweentheactualanddesiredoutcomeproducesthelowestpossibleerror.Aneuralnetworkmaycontainthefollowing3layers:Inputlayer-Theactivityoftheinputunitsrepresentstherawinformationthatcanfeedintothenetwork.Hiddenlayer-Todeterminetheactivityofeachhiddenunit.Theactivitiesoftheinputunitsandtheweightsontheconnectionsbetweentheinputandthehiddenunits.Theremaybeoneormorehiddenlayers.Outputlayer-Thebehavioroftheoutputunitsdependsontheactivityofthehiddenunitsandtheweightsbetweenthehiddenandoutputunits.Whatisanartificialneuralnetwork(ANN)?Whatiseachneuronmadeupof?Whadotheinputunitsdo?WhatdoesanANNinitiallygothrough?Howmanylayersmayaneuralnetworkcontain?Whatarethey?七、将下列词填入适当的位置(每词只用一次)。(每小题10分,共20分)填空题1供选择的答案:transactionsinformationtechniquesfraudnodesunstructuredsubsetsharedautomatedexplosionDeepLearningWhatIsDeepLearning?Deeplearningisanartificialintelligence(AI)functionthatimitatestheworkingsofthehumanbraininprocessingdataandcreatingpatternsforuseindecisionmaking.Deeplearningisa 1 ofmachinelearninginartificialintelligencethathasnetworkscapableoflearningunsupervisedfromdatathatis 2 orunlabeled.Alsoknownasdeepneurallearningordeepneuralnetwork.HowDoesDeepLearningWork?Deeplearninghasevolvedhand-in-handwiththedigitalera,whichhasbroughtaboutan 3 ofdatainallformsandfromeveryregionoftheworld.Thisdata,knownsimplyasbigdata,isdrawnfromsourceslikesocialmedia,internetsearchengines,e-commerceplatforms,andonlinecinemas,amongothers.Thisenormousamountofdataisreadilyaccessibleandcanbe 4 throughfintechapplicationslikecloudcomputing.However,thedata,whichnormallyisunstructured,issovastthatitcouldtakedecadesforhumanstocomprehenditandextractrelevant 5 .CompaniesrealizetheincrediblepotentialthatcanresultfromunravelingthiswealthofinformationandareincreasinglyadaptingtoAIsystemsfor 6 support.DeepLearningvs.MachineLearningOneofthemostcommonAI 7 usedforprocessingbigdataismachinelearning,aself-adaptivealgorithmthatgetsincreasinglybetteranalysisandpatternswithexperienceorwithnewlyaddeddata.Ifadigitalpaymentscompanywantedtodetecttheoccurrenceorpotential 8 initssystem,itcouldemploymachinelearningtoolsforthispurpose.Thecomputationalalgorithmbuiltintoacomputermodelwillprocessall 9 happeningonthedigitalplatform,findpatternsinthedataset,andpointoutanyanomalydetectedbythepattern.Deeplearningutilizesahierarchicallevelofartificialneuralnetworkstocarryouttheprocessofmachinelearning.Theartificialneuralnetworksarebuiltlikethehumanbrain,withneuron 10 connectedtogetherlikeaweb.Whiletraditionalprogramsbuildanalysiswithdatainalinearway,thehierarchicalfunctionofdeeplearningsystemsenablesmachinestoprocessdatawithanonlinearapproach.填空题2供选择的答案:storedresolutionmatchlookunlockdatabasephotographeyesreturn,identifyingFaceRecognitionFacerecognitionsystemsusecomputeralgorithmstopickoutspecific,distinctivedetailsaboutaperson'sface.Thesedetails,suchasdistancebetweenthe 1 orshapeofthechin,arethenconvertedintoamathematicalrepresentationandcomparedtodataonotherfacescollectedinafacerecognitiondatabase.Thedataaboutaparticularfaceisoftencalledafacetemplateandisdistinctfroma 2 becauseit'sdesignedtoonlyincludecertaindetailsthatcanbeusedtodistinguishonefacefromanother.Somefacerecognitionsystems,insteadofpositively 3 anunknownperson,aredesignedtocalculateaprobabilitymatchscorebetweentheunknownpersonandspecificfacetemplates 4 inthedatabase.Thesesystemswillofferupseveralpotentialmatches,rankedinorderoflikelihoodofcorrectidentification,insteadofjustreturningasingleresult.Facerecognitionsystemsvaryintheirabilitytoidentifypeopleunderchallengingconditionssuchaspoorlighting,lowqualityimage 5 ,andsuboptimalangleofview(suchasinaphotographtakenfromabovelookingdownonanunknownperson).Whenitcomestoerrors,therearetwokeyconceptstounderstand:A"falsenegative^^iswhenthefacerecognitionsystemfailsto 6 matchaperson'sfacetoanimagethatis,infact,containedinadatabase.Inotherwords,thesystemwillerroneously 7 zeroresultsinresponsetoaquery.A"falsepositive^^iswhenthefacerecognitionsystemdoesmatchaperson'sfacetoanimageina 8 ,butthatmatchisactuallyincorrect.Thisiswhenapoliceofficersubmitsanimageof"Joe,"butthesystemerroneouslytellstheofficerthatthephotoisof"Jack.”Whenresearchingafacerecognitionsystem,itisimportantto 9 closelyatthet€falsepositive“rateandthe“falsenegative''rate,sincethereisalmostalwaysatrade-off.Forexample,ifyouareusingfacerecognitionto 10 yourphone,itisbetterifthesystemfailstoidentifyyouafewtimes(falsenegative)thanitisforthesystemtomisidentifyotherpeopleasyouandletsthosepeopleunlockyourphone(falsepositive).Iftheresultofamisidentificationisthataninnocentpersongoestojail(likeamisidentificationinamugshotdatabase),thenthesystemshouldbedesignedtohaveasfewfalsepositivesaspossible.六、将下面两篇短文翻译成中文(每小题10分,共20分)短文1DifferencesbetweenStrongAIandWeakAI1.MeaningStrongAIisatheoreticalformofartificialintelligencewhichsupportstheviewthatmachinescanreallydevelophumanintelligenceandconsciousnessinthesamewaythatahumaninconscious.StrongAIreferstoahypotheticalmachinethatexhibitshumancognitiveabilities.WeakAI(alsoknownasnarrowAI),ontheotherhand,isaformofartificialintelligencethatreferstotheuseofadvancedalgorithmstoaccomplishspecificproblemsolvingorreasoningtasksthatdonotencompassthefullrangeofhumancognitiveabilities.2.FunctionalityFunctionsarelimitedinweakAIascomparedtostrongAI.WeakAIdoesnotachieveself-awarenessordemonstrateawiderangeofhumancognitiveabilitiesthatahumanmayhave.WeakAIreferstosystemsthatareprogrammedtoaccomplishawiderangeproblemsbutoperatewithinapre-determinedorpre-definedrangeoffunctions.StrongAI,ontheotherhand,referstomachinesthatexhibithumanintelligence.Theideaistodevelopartificialintelligencetothepointwherehumaninteractwithmachinesthatareconscious,intelligentanddrivenbyemotionsandself-awareness.3.GoalThegoalofweakAlistocreateatechnologythatallowsallowsmachinesandcomputerstotoaccomplishspecificproblemsolvingorreasoningtasksatasignificantlyquickerpacethanahumancan.Butitdoesnotnecessarilyincorporateanyrealworldknowledgeabouttheworldoftheproblemthatisbeingsolved.ThegoalofstrongAIistodevelopartificialintelligencetothepointwhereitcanbeconsideredtruehumanintelligence.StrongAIisatypeofwhichdoesnotexistyetinitstrueform.短文2PatternRecognitionPatternRecognitionisdefinedastheprocessofidentifyingthetrends(globalorlocal)inthegivenpattern.Apatterncanbedefinedasanythingthatfollowsatrendandexhibitssomekindofregularity.Therecognitionofpatternscanbedonephysically,mathematicallyorbytheuseofalgorithms.Whenwetalkaboutpatternrecognitioninmachinelearning,itindicatestheuseofpowerfulalgorithmsforidentifyingtheregularitiesinthegivendata.Patternrecognitioniswidelyusedinthenewagetechnicaldomainslikecomputervision,speechrecognition,facerecognition,etc.Therearetwotypesofpatternrecognitionalgorithmsinmachinelearning.SupervisedAlgorithmsThepatternrecognitioninasupervisedapproachiscalledclassification.Thesealgorithmsuseatwo-stagemethodologyforidentifyingthepatterns.Thefirststageisthedevelopment/constructionofthemodelandthesecondstageinvolvesthepredictionfbrneworunseenobjects.Thekeyfeaturesinvolvingthisconceptarelistedbelow.Classifythegivendataintotwosets—trainingsetandtestingset.TrainthemodelusingasuitablemachinelearningalgorithmsuchasSVM(SupportVectorMachines),decisiontrees,randomforest,etc.Themodelistrainedonthetrainingsetandtestedonthetestingset.Theperformanceofthemodelisevaluatedbasedoncorrectpredictionsmade.UnsupervisedAlgorithmsIncontrasttothesupervisedalgorithmsforpatternmakeuseoftrainingandtestingsets,thesealgorithmsuseagroupbyapproach.Theyobservethepatternsinthedataandgroupthembasedonthesimilarityintheirfeaturessuchasdimensiontomakeaprediction.Let'ssaythatwehaveabasketofdifferentkindsoffruitssuchasapples,oranges,pears,andcherries.Weassumethatwedonotknowthenamesofthefruits.Wekeepthedataasunlabeled.Now,supposeweencounterasituationwheresomeonecomesandtellsustoidentifyanewfruitthatwasaddedtothebasket.Insuchacasewemakeuseofaconceptcalledclustering.Clusteringcombinesorgroupsitemshavingthesamefeatures.Nopreviousknowledgeisavailableforidentifyinganewitem.Theyusemachinelearningalgorithmslikehierarchicalandk-mansclustering.Basedonthefeaturesorpropertiesofthenewobject,itisassignedtoagrouptomakeaprediction.
参考试卷答案\写出以下单词的中文意思(每小题0.5分,共10分)accuracyn.精确(性),准确(性)11customizeVt.定制,定做;用户化2actuatorn.执行器12definitionn.定义3adjustV.调整,调节;适应;校准13defuzzificationn.逆模糊化,去模糊化4agentn.实体:代理14deploymentn.部署5algorithmn.算法15effectorn.效应器6analogyn.类推16entityn.实体7attributen.属性;性质;特征17extractV.提取,提炼8backtrackvi.回溯18feedbackn.反馈9blockchainn.区块链19finiteadj.有限的:限定的1020n.构架;框架;(体系的)clusterv.聚集n.团,群,簇framework结构二、根据给出的中文意思,写出英文单词(每小题0.5分,共10分)1V.收集,搜集gather11n.神经元;神经细胞neuron2adj.嵌入的,内置的inbuilt12n.节点node3n.指示器;指标indicator13V.运转;操作operate4n.基础设施,基础架构infrastructure14n.模式pattern5v.合并:集成integrate15V.察觉,发觉perceive6n.解释器,解释程序interpreter16n.前提premise7n.迭代;循环iteration17adj.程序的:过程的procedural8n.库library18n.回归regression919adi.健壮的,强健的;n.元数据metadatarobust结实的10V.监视;控制;监测monitor20V.筛选screen三、根据给出的短语,写出中文意思(每小题1分,共10分)1dataobject数据对象2cybersecurity网络安全3smartmanufacturing智能制造4clusteredsystem集群系统5datavisualization数据可视化6opensource开源7analyzetext分析文本8cloudcomputing云计算9computationpower计算能力10objectrecognition物体识别四、根据给出的中文意思,写出英文短语(每小题1分,共10分)
1数据结构datastructure2决策树decisiontree3演绎推理deductivereasoning4贪婪最佳优先搜索greedybest-firstsearch5隐藏模式,隐含模式hiddenpattern6知识挖掘knowledgemining7逻辑推理logicalreasoning8预测性维护predictivemaintenance9搜索引擎searchengine10文本挖掘技术textminingtechnique五、写出以下缩略语的完整形式和中文意思(每小题1分,共10分)缩略语完整形式中文意思1ANNArtificialNeuralNetwork人工神经网络2ARAugmentedReality增强现实3BFSBreadth-FirstSearch宽度优先搜索4CVComputerVision计算机视觉5DFSDepth-FirstSearch深度优先搜索6ESExpertSystem专家系统7IAIntelligentAgent智能体8KNNK-NearestNeighborK最近邻算法9NLPNaturalLanguageProcessing自然语言处理10VRVirtualReality虚拟现实六、阅读短文,回答问题(每小题2分,共10分)Anartificialneuralnetwork(ANN)isthepieceofacomputingsystemdesignedtosimulatethewaythehumanbrainanalyzesandprocessesinformation.Itisthefoundationofartificialintelligence(AI)andsolvesproblemsthatwouldproveimpossibleordifficultbyhumanorstatisticalstandards.Eachneuronismadeupofacellbodythatisresponsibleforprocessinginformationbycarryinginformationtowards(inputs)andaway(outputs)fromthebrain.Theinputunitsreceivevariousformsandstructuresofinformationbasedonaninternalweightingsystem.A
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 二零二五年度高空作业安全生产施工合同集2篇
- 二零二五年度绿色环保木工支模项目合同4篇
- 2025版木箱纸箱包装设计创新与市场推广合同4篇
- 2025年度个人购房合同产权转移登记流程4篇
- 危险品运输车辆驾驶员岗前培训考核试卷
- 2025版二零二五年度现代木工清工分包合同模板4篇
- 【新课标Ⅲ卷】高三第二次全国大联考语文试卷(含答案)
- 爱学习有自信幼儿舞蹈创编15课件讲解
- 2025年专业期刊发行协议
- 2025年合伙劳动分工协议
- 2024公路沥青路面结构内部状况三维探地雷达快速检测规程
- 2024年高考真题-地理(河北卷) 含答案
- 中国高血压防治指南(2024年修订版)解读课件
- 食材配送服务方案投标方案(技术方案)
- 足疗店营销策划方案
- 封条(标准A4打印封条)
- 2024年北京控股集团有限公司招聘笔试参考题库含答案解析
- 延迟交稿申请英文
- 运动技能学习与控制课件第十章动作技能的指导与示范
- 石油天然气建设工程交工技术文件编制规范(SYT68822023年)交工技术文件表格仪表自动化安装工程
- 中医治疗“湿疹”医案72例
评论
0/150
提交评论