2023届长治市重点中学高一数学第一学期期末学业质量监测试题含解析_第1页
2023届长治市重点中学高一数学第一学期期末学业质量监测试题含解析_第2页
2023届长治市重点中学高一数学第一学期期末学业质量监测试题含解析_第3页
2023届长治市重点中学高一数学第一学期期末学业质量监测试题含解析_第4页
2023届长治市重点中学高一数学第一学期期末学业质量监测试题含解析_第5页
已阅读5页,还剩9页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

13/142022-2023学年高一上数学期末模拟试卷注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知函数,则不等式的解集为()A. B.C. D.2.函数的零点所在的区间是A.(0,1) B.(1,2)C.(2,3) D.(3,4)3.对于函数,有以下几个命题①的图象关于点对称,②在区间递增③的图象关于直线对称,④最小正周期是则上述命题中真命题的个数是()A.0 B.1C.2 D.34.若,,则等于()A. B.3C. D.5.直线经过第一、二、四象限,则a、b、c应满足()A. B.C. D.6.幂函数的图象过点,则函数的值域是()A. B.C. D.7.设,,,则、、的大小关系是A. B.C. D.8.某四面体的三视图如图,则该四面体的体积是A.1 B.C. D.29.是定义在上的偶函数,在上单调递增,,,则下列不等式成立的是()A. B.C. D.10.若点关于直线的对称点是,则直线在轴上的截距是A.1 B.2C.3 D.4二、填空题:本大题共6小题,每小题5分,共30分。11.已知,,则______.12.函数的最大值为().13.已知函数(为常数)是奇函数.(1)求的值与函数的定义域.(2)若当时,恒成立.求实数的取值范围.14.已知等差数列的前项和为,,则__________15.要在半径cm的圆形金属板上截取一块扇形板,使弧AB的长为m,那么圆心角_________.(用弧度表示)16.对于定义在上的函数,如果存在区间,同时满足下列两个条件:①在区间上是单调递增的;②当时,函数的值域也是,则称是函数的一个“递增黄金区间”.下列函数中存在“递增黄金区间”的是:___________.(填写正确函数的序号)①;②;③;④.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知函数(1)若的值域为R,求实数a的取值范围;(2)若,解关于x的不等式.18.已知全集,若集合,.(1)若,求;(2)若,求实数的取值范围.19.(1)计算:.(2)化简:.20.已知平面向量,,,且,.(1)求和:(2)若,,求向量与向量的夹角的大小.21.已知函数为奇函数(1)求的值;(2)判断的单调性,并用定义证明;(3)解不等式

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解析】由题可得函数为偶函数,且在上为增函数,可得,然后利用余弦函数的性质即得.【详解】∵函数,定义域为R,∴,∴函数为偶函数,且在上为增函数,,∵,∴,即,又,∴.故选:D.2、B【解析】因为函数为上的增函数,故利用零点存在定理可判断零点所在的区间.【详解】因为为上的增函数,为上的增函数,故为上的增函数.又,,由零点存在定理可知在存在零点,故选B.【点睛】函数的零点问题有两种类型,(1)计算函数的零点,比如二次函数的零点等,有时我们可以根据解析式猜出函数的零点,再结合单调性得到函数的零点,比如;(2)估算函数的零点,如等,我们无法计算此类函数的零点,只能借助零点存在定理和函数的单调性估计零点所在的范围.3、C【解析】先通过辅助角公式将函数化简,进而结合三角函数的图象和性质求得答案.【详解】由题意,,函数周期,④正确;,①错误;,③错误;由,②正确.故选:C.4、A【解析】根据已知确定,从而求得,进而求得,根据诱导公式即求得答案.【详解】因为,,所以,则,故,故选:A5、A【解析】根据直线经过第一、二、四象限判断出即可得到结论.【详解】由题意可知直线的斜率存在,方程可变形为,∵直线经过第一、二、四象限,∴,∴且故选:A.6、C【解析】设,带点计算可得,得到,令转化为二次函数的值域求解即可.【详解】设,代入点得,则,令,函数的值域是.故选:C.7、B【解析】详解】,,,故选B点睛:利用指数函数对数函数及幂函数的性质比较实数或式子的大小,一方面要比较两个实数或式子形式的异同,底数相同,考虑指数函数增减性,指数相同考虑幂函数的增减性,当都不相同时,考虑分析数或式子的大致范围,来进行比较大小,另一方面注意特殊值的应用,有时候要借助其“桥梁”作用,来比较大小8、B【解析】在正方体ABCD­A1B1C1D1中还原出三视图的直观图,其是一个三个顶点在正方体的右侧面、一个顶点在左侧面的三棱锥,即为D1­BCB1,如图所示,该四面体的体积为.故选B点睛:三视图问题的常见类型及解题策略(1)由几何体的直观图求三视图.注意正视图、侧视图和俯视图的观察方向,注意看到的部分用实线表示,不能看到的部分用虚线表示(2)由几何体的部分视图画出剩余的部分视图.先根据已知的一部分三视图,还原、推测直观图的可能形式,然后再找其剩下部分三视图的可能形式.当然作为选择题(3)由几何体的三视图还原几何体的形状.要熟悉柱、锥、台、球的三视图,明确三视图的形成原理,结合空间想象将三视图还原为实物图9、C【解析】根据对数的运算法则,得到,结合偶函数的定义以及对数函数的单调性,得到自变量的大小,根据函数在上的单调性,得到函数值的大小,得到选项.【详解】,而,因为是定义在上的偶函数,且在上单调递增,所以,所以,故选:C.10、D【解析】∵点A(1,1)关于直线y=kx+b的对称点是B(﹣3,3),由中点坐标公式得AB的中点坐标为,代入y=kx+b得①直线AB得斜率为,则k=2.代入①得,.∴直线y=kx+b为,解得:y=4.∴直线y=kx+b在y轴上的截距是4.故选D.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】把已知的两个等式两边平方作和即可求得cos(α﹣β)的值【详解】解:由已知sinα+sinβ=1①,cosα+cosβ=0②,①2+②2得:2+2cos(α﹣β)=1,∴cos(α﹣β),故答案为点睛】本题考查三角函数的化简求值,考查同角三角函数基本关系式及两角差的余弦,是基础题12、【解析】利用可求最大值.【详解】因为,即,,取到最小值;所以函数的最大值为.故答案为:.【点睛】本题主要考查三角函数的最值问题,借助正弦函数的值域能方便求解,侧重考查数学抽象的核心素养.13、(1),定义域为或;(2).【解析】(1)根据函数是奇函数,得到,求出,再解不等式,即可求出定义域;(2)先由题意,根据对数函数的性质,求出的最小值,即可得出结果.【详解】(1)因为函数是奇函数,所以,所以,即,所以,令,解得或,所以函数的定义域为或;(2),当时,所以,所以.因为,恒成立,所以,所以的取值范围是.【点睛】本题主要考查由函数奇偶性求参数,考查求具体函数的定义域,考查含对数不等式,属于常考题型.14、161【解析】由等差数列的性质可得,即可求出,又,带入数据,即可求解【详解】由等差数列的性质可得=,所以,又由等差数列前n项和公式得【点睛】本题考查等差数列的性质及前n项和公式,属基础题15、【解析】由弧长公式变形可得:,代入计算即可.【详解】解:由题意可知:(弧度).故答案为:.16、②③【解析】由条件可得方程有两个实数解,然后逐一判断即可.【详解】∵在上单调递增,由条件②可知,即方程有两个实数解;∵x+1=x无实数解,∴①不存在“递增黄金区间”;∵的两根为:1和2,不难验证区间[1,2]是函数的一个“递增黄金区间”;在同一坐标系中画出与的图象如下:由图可得方程有两个根,∴③也存在“递增黄金区间”;在同一坐标系中画出与的图象如下:所以没有实根,∴④不存在.故答案为:②③.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)或.(2)见解析.【解析】(1)当时,的值域为,当时,的值域为,如满足题意则,解之即可;(2)当时,,即恒成立,当时,即,分类讨论解不等式即可.试题解析:(1)当时,的值域为当时,的值域为,的值域为,解得或的取值范围是或.(2)当时,,即恒成立,当时,即(ⅰ)当即时,无解:(ⅱ)当即时,;(ⅲ)当即时①当时,②当时,综上(1)当时,解集为(2)当时,解集(3)当时,解集为(4)当时,解集为18、(1)(2)【解析】(1)利用集合的交集及补集的定义直接求解即可;(2)由可得,利用集合的包含关系求解即可.【详解】(1)当时,,所以,因为,所以;(2)由得,,所以【点睛】本题主要考查了集合的运算及包含关系求参,属于基础题.19、(1);(2)【解析】(1)根据分数指数幂及对数的运算法则计算可得;(2)利用诱导公式及特殊值的三角函数值计算可得;【详解】解:(1)(2)20、(1),;(2).【解析】(1)本题首先可根据、得出,然后通过计算即可得出结果;(2)本题首先可根据题意得出以及,然后求出、以及的值,最后根据向量的数量积公式即可得出结果.【详解】(1)因为,,,且,,所以,解得,故,.(2)因为,,所以,因为,,所以,,,,设与的夹角为,则,因为,所以,向量与向量的夹角为.【点睛】本题考查向量平行、向量垂直以及向量的数量积的相关性质,若、且,则,考查通过向量的数量积公式求向量的夹角,考查计算能力,是中档题.21、(1)(2)单调递减,证明见解析(3)【解析】(1)根据奇函数性质求解即可;(2)

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论