版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
13/132022-2023学年高一上数学期末模拟试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(本大题共12小题,共60分)1.若直线x+(1+m)y-2=0与直线mx+2y+4=0平行,则m的值是A.1 B.-2C.1或-2 D.2.已知函数,,的零点分别为则的大小顺序为()A. B.C. D.3.设非零向量、、满足,,则向量、的夹角()A. B.C. D.4.已知弧长为的弧所对的圆心角为,则该弧所在的扇形面积为()A. B.C. D.5.下列函数中,既是奇函数又存在零点的函数是()A. B.C. D.6.曲线在区间上截直线及所得的弦长相等且不为,则下列对,的描述正确的是A., B.,C., D.,7.圆与圆的位置关系是()A.内含 B.内切C.相交 D.外切8.已知点,,,则的面积为()A.5 B.6C.7 D.89.比较,,的大小()A. B.C. D.10.已知角的顶点与原点重合,它的始边与轴的非负半轴重合,它的终边上一点坐标为,.则为()A. B.C. D.11.要得到函数的图象,只需把函数的图象上所有的点()A.向左平行移动个单位长度 B.向右平行移动个单位长度C.向左平行移动个单位长度 D.向右平行移动个单位长度12.我国数学家陈景润在哥德巴赫猜想的研究中取得了世界领先的成果.哥德巴赫猜想是“每个大于2的偶数可以表示为两个素数的和”,如.在不超过20的素数中,随机选取2个不同的数,其和等于20的概率是()【注:如果一个大于1的整数除了1和自身外无其它正因数,则称这个整数为素数.】A. B.C. D.二、填空题(本大题共4小题,共20分)13.函数y=1-sin2x-2sinx的值域是______14.已知函数是定义在上的奇函数,当时,为常数),则=_________.15.已知一个铜质的实心圆锥的底面半径为6,高为3,现将它熔化后铸成一个铜球(不计损耗),则该铜球的半径是__________16.体积为8的正方体的顶点都在同一球面上,则该球面的表面积为__________.三、解答题(本大题共6小题,共70分)17.在新型冠状病毒感染的肺炎治疗过程中,需要某医药公司生产的某种药品.此药品的年固定成本为200万元,每生产x千件需另投入成本,当年产量不足60千件时,(万元),当年产量不小于60千件时,(万元).每千件商品售价为50万元,在疫情期间,该公司生产的药品能全部售完(1)写出利润(万元)关于年产量x(千件)的函数解析式;(2)该公司决定将此药品所获利润的10%用来捐赠防疫物资,当年产量为多少千件时,在这一药品的生产中所获利润最大?此时可捐赠多少万元的物资款?18.已知.(1)若为第四象限角且,求的值;(2)令函数,,求函数的递增区间.19.已知函数的图象恒过定点A,且点A又在函数的图象上.(1)求实数a的值;(2)若函数有两个零点,求实数b的取值范围.20.某校手工爱好者社团出售自制的工艺品,每件的售价在20元到40元之间时,其销售量(件)与售价(元/件)之间满足一次函数关系,部分对应数据如下表所示.(元/件)20212223……3940(件)440420400380……6040(1)求此一次函数的解析式;(2)若每件工艺品的成本是20元,在不考虑其他因素的情况下,每件工艺品的售价是多少时,利润最大?最大利润是多少?21.已知函数(1)证明:;(2)若存在一个平行四边形的四个顶点都在函数的图象上,则称函数具有性质P,判断函数是否具有性质P,并证明你的结论;(3)设点,函数.设点B是曲线上任意一点,求线段AB长度的最小值22.已知函数是定义在上的奇函数,且当时,(1)求实数的值;(2)求函数在上的解析式;(3)若对任意实数恒成立,求实数的取值范围
参考答案一、选择题(本大题共12小题,共60分)1、A【解析】分类讨论直线的斜率情况,然后根据两直线平行的充要条件求解即可得到所求【详解】①当时,两直线分别为和,此时两直线相交,不合题意②当时,两直线的斜率都存在,由直线平行可得,解得综上可得故选A【点睛】本题考查两直线平行的等价条件,解题的关键是将问题转化为对直线斜率存在性的讨论.也可利用以下结论求解:若,则且或且2、C【解析】利用数形结合,画出函数的图象,判断函数的零点的大小即可【详解】函数,,的零点转化为,,与的图象的交点的横坐标,因为零点分别为在坐标系中画出,,与的图象如图:可知,,,满足故选:3、B【解析】根据已知条件,应用向量数量积的运算律可得,由得,即可求出向量、的夹角.【详解】由题意,,即,∵,∴,则,又,∴.故选:B4、B【解析】先求得扇形的半径,由此求得扇形面积.【详解】依题意,扇形的半径为,所以扇形面积为.故选:B5、A【解析】判断函数的奇偶性,可排除选项得出正确答案【详解】因为是偶函数,故B错误;是非奇非偶函数,故C错误;是非奇非偶函数,故D错误;故选:A.6、A【解析】分析:,关于对称,可得,由直线及的距离小于可得.详解:因为曲线在区间上截直线及所得的弦长相等且不为,可知,关于对称,所以,又弦长不为,直线及的距离小于,∴.故选A.点睛:本题主要考查三角函数的图象与性质,意在考查综合运用所学知识解决问题的能力,以及数形结合思想的应用,属于简单题.7、D【解析】根据两圆的圆心距和两半径的和与差的关系判断.【详解】因为圆与圆的圆心距为:两圆的半径之和为:,所以两圆相外切,故选:D8、A【解析】设AB边上的高为h,则S△ABC=|AB|·h,根据两点的距离公式求得|AB|,而AB边上的高h就是点C到直线AB的距离,由点到直线的距离公式可求得选项【详解】设AB边上的高为h,则S△ABC=|AB|·h,而|AB|=,AB边上的高h就是点C到直线AB的距离AB边所在的直线方程为,即x+y-4=0.点C到直线x+y-4=0的距离为,因此,S△ABC=×2×=5.故选:A9、D【解析】由对数函数的单调性判断出,再根据幂函数在上单调递减判断出,即可确定大小关系.【详解】因为,,所以故选:D【点睛】本题考查利用对数函数及幂函数的单调性比较数的大小,属于基础题.10、D【解析】根据正弦函数的定义可得选项.【详解】的终边上有一点,,.故选:D.11、C【解析】根据三角函数图象的平移变换求解即可.【详解】由题意,为得到函数的图象,只需把函数的图象上所有的点向左平移个单位长度即可.故选:C12、A【解析】随机选取两个不同的数共有种,而其和等于20有2种,由此能求出随机选取两个不同的数,其和等于20的概率【详解】在不超过20的素数中有2,3,5,7,11,13,17,19共8个,随机选取两个不同的数共有种,随机选取两个不同的数,其和等于20有2种,分别为(3,17)和(7,13),故可得随机选取两个不同的数,其和等于20的概率,故选:二、填空题(本大题共4小题,共20分)13、[-2,2]【解析】利用正弦函数的值域,二次函数的性质,求得函数f(x)的值域,属于基础题【详解】∵sinx∈[-1,1],∴函数y=1-sin2x-2sinx=-(sinx+1)2+2,故当sinx=1时,函数f(x)取得最小值为-4+2=-2,当sinx=-1时,函数f(x)取得最大值为2,故函数的值域为[-2,2],故答案为[-2,2]【点睛】本题主要考查正弦函数的值域,二次函数的性质,属于基础题14、【解析】先由函数奇偶性,结合题意求出,计算出,即可得出结果.【详解】因为为定义在上的奇函数,当时,,则,解得,则,所以,因此.故答案为:.15、3【解析】设铜球的半径为,则,得,故答案为.16、【解析】正方体体积8,可知其边长为2,正方体的体对角线为=2,即为球的直径,所以半径为,所以球的表面积为=12π故答案为:12π点睛:设几何体底面外接圆半径为,常见的图形有正三角形,直角三角形,矩形,它们的外心可用其几何性质求;而其它不规则图形的外心,可利用正弦定理来求.若长方体长宽高分别为则其体对角线长为;长方体的外接球球心是其体对角线中点.找几何体外接球球心的一般方法:过几何体各个面的外心分别做这个面的垂线,交点即为球心.三棱锥三条侧棱两两垂直,且棱长分别为,则其外接球半径公式为:.三、解答题(本大题共6小题,共70分)17、(1);(2)当年产量为80千件时所获利润最大为640万元,此时可捐64万元物资款.【解析】(1)分、两种情况讨论,结合利润销售收入成本,可得出年利润(万元)关于年产量(千件)的函数解析式;(2)利用二次函数的基本性质、基本不等式可求得函数的最大值及其对应的值,由此可得出结论.【小问1详解】由题意可知,当时,,当时,,故有;【小问2详解】当时,,即时,,当时,有,当且仅当时,,因为,所以时,,答:当产量为80千件时所获利润最大为640万元,此时可捐64万元物资款.18、(1);(2).【解析】(1)先利用诱导公式化简,再利用同角三角函数的基本关系求解,代入即得结果;(2)利用两角和的正弦公式的逆应用化简函数,再利用整体代入法,结合范围得到递增区间即可.【详解】解:(1),,,为第四象限角,;(2)由(1)知,故,令,得,又,函数的递增区间为.19、(1)(2)【解析】(1)由函数图象的平移变换可得点A坐标,然后代入函数可解;(2)将函数零点个数问题转化为两个函数图象的交点个数问题,作图可解.【小问1详解】函数的图象可由指数函数的图象,向右平移2个单位长度,再向上平移1个单位长度得到.因为函数的图象过定点,故函数的图象恒过定点,又因为A点在图象上,则∴解得【小问2详解】,若函数有两个零点,则方程有两个不等实根,令,,则它们的函数图象有两个交点,由图可知:,故b的取值范围为.20、(1)(2)每件工艺品的售价为31元时,利润最大,最大利润为2420元【解析】(1)设,任取两级数据代入求得参数值得解析式;(2)由(1)中关系式得出利润与的关系,由二次函数的性质得最大值【小问1详解】设,不妨选择两组数据,代入,可得解得∴一次函数的解析式为【小问2详解】设利润为元,由题意可得,∴当时,,∴每件工艺品的售价为31元时,利润最大,最大利润为2420元21、(1)证明见解析;(2)函数具有性质P,证明见解析;(3).【解析】(1)直接利用对数的运算求解;(2)取函数图象上四个点,证明函数具有性质P;(3)设(或),求出,再换元利用二次函数求函数的最值得解.【小问1详解】解:【小问2详解】解:由(1)知,的图象关于点中心对称,取函数图象上两点,,显然线段CD的中点恰为点M;再取函数图象上两点,,显然线段EF的中点也恰为点M因此四边形CEDF的对角线互相平分,所以四边形CEDF为平行四边形,所以函数具有性质P小问3详解】解:,则(或),则,记(或),则,记,则,所以,当,即时,22、(1);(2);(3)【解析】(1)由题利用即可求解;(2)当x<0,则﹣x>0,根据函数为奇
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 自然灾害风险管理培训
- 高中教师自我提升计划
- 班级特色项目的设计与实施计划
- 五年级数学(小数四则混合运算)计算题专项练习及答案汇编
- 五年级数学(小数四则混合运算)计算题专项练习及答案
- 徐州工程学院《图形设计》2022-2023学年第一学期期末试卷
- 食品饮料项目投资合作协议三篇
- 预算执行总结报告计划
- 销售管理中的时间管理技巧培训
- 工业厂房拆迁改造工程合同三篇
- 数据迁移服务行业发展趋势预测及战略布局建议报告
- 【企业盈利能力探析的国内外文献综述2400字】
- 危急值的考试题及答案
- 轻医美技术合作项目协议书范本
- 走进鱼类世界智慧树知到期末考试答案章节答案2024年中国海洋大学
- (正式版)SHT 3227-2024 石油化工装置固定水喷雾和水(泡沫)喷淋灭火系统技术标准
- 大学生国家安全教育智慧树知到期末考试答案2024年
- 2023年6月英语六级考试真题附答案解析(全3套)
- 2024年中煤鄂尔多斯能源化工有限公司招聘笔试参考题库含答案解析
- 给药错误护理安全警示教育
- 陕09J01 建筑用料及做法图集
评论
0/150
提交评论