版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
...wd......wd......wd...二元一次方程组解应用题类型题大全班上有男女同学32人,女生人数的一半比男生总数少10人,假设设男生人数为x人,女生人数为y人,那么可列方程组为2、甲乙两数的和为10,其差为2,假设设甲数为x,乙数为y,那么可列方程组为3、方程y=kx+b的两组解是那么k=b=4、某工厂现在年产值是150万元,如果每增加1000元的投资一年可增加2500元的产值,设新增加的投资额为x万元,总产值为y万元,那么x,y所满足的方程为学校购置35张电影票共用250元,其中甲种票每张8元,乙种票每张6元,设甲种票x张,乙种票y张,那么列方程组,方程组的解是一根木棒长8米,分成两段,其中一段比另一段长1米,求这两段的长时,设其中一段为x米,另一段为y,那么列的二元一次方程组为7、一个矩形周长为20cm,且长比宽大2cm,那么矩形的长为cm,宽为cm8、某校运发动分组训练,假设每组7人,余3人;假设每组8人,那么缺5人;设运发动人数为x人,组数为y组,那么列方程组为 〔 〕 9、一只轮船顺水速度为40千米/时,逆水速度为26千米/时,那么船在静水的速度是,水流速度是。10、一辆汽车从A地出发,向东行驶,途中要过一座桥,使用一样的时间,如果车速是每小时60千米,就能越过桥2千米;如果车速是每小时50千米,就差3千米才能到桥,那么A地与桥相距_____千米,用了小时.(考虑问题时,桥视为一点)11、一块矩形草坪的长比宽的2倍多10m,它的周长是132m,那么宽和长分别为_____.12、一批书分给一组学生,每人6本那么少6本,每人5本那么多5本,该组共有_____名学生,这批书共有_______本.13、某年级有学生246人,其中男生比女生人数的2倍少3人,求男、女生各有多少人.设女生人数为x人,男生人数为y,那么可列出方程组_______.14、甲、乙两条绳共长17m,如果甲绳减去,乙绳增加1m,两条绳长相等,求甲、乙两条绳各长多少米.假设设甲绳长x〔m〕,乙绳长y〔m〕,那么可列方程组〔〕.15、长江比黄河长836km,黄河长度的6倍比长江长度的5倍多1284km.设长江、黄河的长度分别为x〔km〕,y〔km〕,那么可列出方程组.16、班上有男女同学32人,女生人数的一半比男生总数少10人,假设设男生人数为x人,女生人数为y人,那么可列方程组为17、甲乙两数的和为10,其差为2,假设设甲数为x,乙数为y,那么可列方程组为18、方程y=kx+b的两组解是那么k=b=19、某工厂现在年产值是150万元,如果每增加1000元的投资一年可增加2500元的产值,设新增加的投资额为x万元,总产值为y万元,那么x,y所满足的方程为20、学校购置35张电影票共用250元,其中甲种票每张8元,乙种票每张6元,设甲种票x张,乙种票y张,那么列方程组,方程组的解是21、一根木棒长8米,分成两段,其中一段比另一段长1米,求这两段的长时,设其中一段为x米,另一段为y,那么列的二元一次方程组为22、一个矩形周长为20cm,且长比宽大2cm,那么矩形的长为cm,宽为cm23、七〔2〕班有任课教师6名,学生30名,其中男生占全班学生的60%,假设画出该班全体师生人数的扇形统计图,男生所占的扇形的圆心角为.24、小利持250元人民币到一超市购置一物品,发现每个物品上标价为2.5元/个,而在超市的促销广告上却标明:买这种物品到达100个以上〔不包括100个〕售价为2.4元/个,小利用手中的人民币最多可买个这种物品.25、某同学买80分邮票与一元邮票共花16元,买的一元邮票比80分邮票少2枚,设买80分邮票枚,那么依题意得到方程为〔〕26、某种商品的进价为15元,出售时标价是22.5元。由于市场不景气销售情况不好,商店准备降价处理,但要保证利润率不低于10%,那么该店最多降价_______元出售该商品。27、有一个商店把某件商品按进价加20%作为定价,可是总卖不出去;后来老板按定价减20%以96元出售,很快就卖掉了。那么这次生意盈亏情况是〔〕A、赚6元B、不亏不赚C、亏4元D、亏24元28、班级组织有奖知识竞赛,小明用100元班费购置笔记本和钢笔共30件,笔记本每本2元,钢笔每支5元,那么小明最多能买钢笔〔〕A、20支B、14支C、13支D、10支29、某商店销售一批服装,每件售价150元,可获利25%,求这种服装的成本价。设这种服装的成本价为x元,那么得到的方程是〔〕A、EQ\F(150-x,x)=25%B、150-x=25%C、x=150×25%D、25%·x=15030、学校食堂出售两种厚度一样但大小不同的面饼,小饼直径30cm,售价30分,大饼直径40cm,售价40分。你更愿意买__________饼,原因_____________31、某书城开展学生优惠活动,凡一次性购书不超过200元的一律九折优惠,超过200元的其中200元按九折算,超过的局部按八折算。某学生一次去购书付款72元,第二次又去购书享受了八折优惠,他查看了所买书的定价,发现两次共节省了34元人民币。那么该学生第二次购书实际付款_________________________元。32、某原料供应商对购置其原料的顾客实行如下优惠方法:〔1〕一次购置金额不超过1万元的不予优惠;〔2〕一次购置金额超过1万元,但不超过3万元的九折优惠;〔3〕一次购置金额超过3万元,其中3万元九折优惠,超过3万元的局部八折优惠。某厂因库存原因,第一次在该供应商处购置原料付款7800元,第二次购置付款26100元。如果他是一次性购置同样的原料,可少付款〔〕A、1460元B、1540元C、1560元D、2000元33、七年级足球循环赛中,规定胜一场得3分,平一场得1分,负一场得0分.现在七(一)班已赛8场,获19分.那么七(一)班现在的战况是____________________(说明:填"胜几场,平几场,负几场〞)知能点2古代问题1.古题:“我问开店李三公,众客都来到店中,一房七客多七客,一房九客一房空.〞那么有_______间房,有_____位客人.2.今有大、小盛米桶,5个大桶加上1个小桶,可盛3斛米;1个大桶加上5个小桶,可盛2斛米,求大、小桶各盛多少米〔斛:量器名,古时用〕.假设设大桶盛x斛米,小桶盛y斛米,那么可列方程组为__________.3.“今有鸡、兔同笼,上有三十五头,下有九十四足,问鸡兔各几何〞.题目大意:在现有鸡、兔在同一个笼子里,上边数有35个头,下边数有94只脚,求鸡、兔各有多少只.4.?希腊文集?中有一些用童话形式写成的数学题.比方驴和骡子驮货物这道题,就曾经被大数学家欧拉改编过,题目是这样的:驴和骡子驮着货物并排走在路上,驴不住地埋怨自己驮的货物太重,压得受不了.骡子对驴说:“你发什么牢骚啊!我驮的货物比你重,假假设你的货物给我一口袋,我驮上的货就比你驮的重一倍,而我假设给你一口袋,咱俩驮的才一样多.〞那么驴和骡子各驮几口袋货物你能用方程组来解这个问题吗◆规律方法一般性应用题〔和差倍问题〕学校的篮球比足球数的2倍少3个,篮球数与足球数的比为3:2,求这两种球队各是多少个〔和差倍问题〕一次篮,排球比赛,共有48个队,520名运发动参加,其中篮球队每队10名,排球队每队12名,求篮,排球各有多少队参赛〔和差倍问题〕一次篮、排球比赛,共有48个队,520名运发动参加,其中篮球队每队10名,排球队每队12名,求篮、排球各有多少队参赛〔和差倍问题〕有甲、乙两种金属,甲金属的16分之一和乙金属的33分之一重量相等,而乙金属的55分之一比甲金属的40分之一重7克,求两种金属各重多少克〔和差倍问题〕某厂第二车间的人数比第一车间的人数的五分之四少30人.如果从第一车间调10人到第二车间,那么第二车间的人数就是第一车间的四分之三.问这两个车间各有多少人〔和差倍问题〕今年,小李的年龄是他爷爷的五分之一.小李发现,12年之后,他的年龄变成爷爷的三分之一.试求出今年小李的年龄.〔和差倍问题〕小明和小亮做加法游戏,小明在一个加数后面多写了一个0,得到的和为242;而小亮在另一个加数后面多写了一个0,得到的和为341,原来两个加数分别是多少〔和差倍问题、行程问题〕一条公路,第一天修了全程的8分之一多5米;第二天修了全程的5分之一少14米,还剩63米,求这条公路有多长〔和差倍问题、行程问题〕某老翁将一根长草绳剪成前、中、后三段,中段长等于前段长加后段长,后段长等于前段长加中段长的一半,现只知道前段长5m,那么该草绳的中段,后段各长多少米〔和差倍问题、金融问题〕共青团中央部门发起了“保护母亲河〞行动,某校九年级两个班的115名学生积极参与,九一班有三分之一的学生捐了10元,九二班有五分之二的学生每人捐了十元,两班其余的学生每人捐了5元,两班的捐款总额为785元,问两班各有多少名学生?〔和差倍问题〕某检测站要在规定时间内检测一批仪器,原方案每天检测30台这种仪器,那么在规定时间内只能检测完总数的七分之三;现在每天实际检测40台,结果不但比原方案提前了一天完成任务,还可以多检测25台.问规定时间是多少天这批仪器共多少台〔和差倍问题〕游泳池中有一群小朋友,男孩戴蓝色游泳帽,女孩戴红色游泳帽。如果每位男孩看到蓝色与红色的游泳帽一样多,而每位女孩看到蓝色的游泳帽比红色的多1倍,你知道男孩与女孩各有多少人吗问题:⑴问题中的量是什么待求量是什么⑵有哪些相等关系〔即等量关系〕〔行程问题〕一条船顺流航行,每小时行20千米;逆流航行每小时行16千米。那么这条轮船在静水中每小时行千米〔行程问题〕甲以5km/h的速度进展有氧体育锻炼,2h后,乙骑自行车从同地出发沿同一条路追赶甲。根据他们两人的约定,乙最快不早于1h追上甲,最慢不晚于1h15min追上甲,那么乙骑车的速度应当控制在什么范围〔行程问题〕从甲地到乙地的路有一段上坡、一段平路与一段3千米长的下坡,如果保持上坡每小时走3千米,平路每小时走4千米,下坡每小时走5千米,那么从甲到乙地需90分,从乙地到甲地需102分。甲地到乙地全程是多少〔行程问题〕某班同学去18千米的北山郊游。只有一辆汽车,需分两组,甲组先乘车、乙组步行。车行至A处,甲组下车步行,汽车返回接乙组,最后两组同时到达北山站。车速度是60千米/时,步行速度是4千米/时,求A点距北山的距离。〔行程问题〕甲乙两人分别从甲、乙两地同时相向出发,在甲超过中点50米处甲、乙两人第一次相遇,甲、乙到达乙、甲两地后立即反身往回走,结果甲、乙两人在距甲地100米处第二次相遇,求甲、乙两地的路程。〔行程问题〕甲,乙两人分别从甲,乙两地同时相向出发,在甲超过中点50米处甲,乙两人第一次相遇,甲,乙到达乙,甲两地后立即返身往回走,结果甲,乙两人在距甲地100米处第二次相遇,求甲,乙两地的路程.〔行程问题〕两列火车同时从相距910千米的两地相向出发,10小时后相遇,如果第一列车比第1二列车早出发4小时20分,那么在第二列火车出发8小时后相遇,求两列火车的速度.〔行程问题〕某班同学去18千米的北山郊游.只有一辆汽车,需分两组,甲组先乘车,乙组步行.车行至A处,甲组下车步行,汽车返回接乙组,最后两组同时到达北山站.汽车速度是60千米/时,步行速度是4千米/时,求A点距北山站的距离.〔行程问题〕通讯员要在规定时间内到达某地,他每小时走15千米,那么可提前24分钟到达某地;如果每小时走12千米,那么要迟到15分钟。求通讯员到达某地的路程是多少千米和原定的时间为多少小时〔分配问题〕一级学生去饭堂开会,如果每4人共坐一张长凳,那么有28人没有位置坐,如果6人共坐一张长凳,求初一级学生人数及长凳数.〔分配调运〕运往灾区的两批货物,第一批共480吨,用8节火车车厢和20辆汽车正好装完;第二批共运524吨,用10节火车车厢和6辆汽车正好装完,求每节火车车厢和每辆汽车平均各装多少吨〔分配问题〕假设干学生住宿,假设每间住4人那么余20人,假设每间住8人,那么有一间不空也不满,问宿舍几间,学生多少人〔分配问题〕将假设干练习本分给假设干名同学,如果每人分4本,那么还余20本;如果每人分8本,那么最后一名同学分到的缺乏8本,求学生人数和练习本数。〔分配问题〕课外阅读课上,教师将43本书分给各小组,每组8本,还有剩余;每组9本却又不够。问有几个小组〔分配问题〕小龙和小刚两人玩“打弹珠〞游戏,小龙对小刚说:“把你珠子的一半给我,我就有10颗珠子〞.小刚却说:“只要把你的给我,我就有10颗〞,如果设小刚的弹珠数为颗,小龙的弹珠数为颗,问各有多少颗弹珠〔分配问题〕小明与他的爸爸一起做投篮球游戏.两人商定规那么为:小明投中1个得3分,小明爸爸投中1个得1分.结果两人一共投中了20个,一计算,发现两人的得分恰好相等.你能告诉我,他们两人各投中几个吗〔分配问题〕运往灾区的两批货物,第一批共480吨,用8节火车车厢和20辆汽车正好装完;第二批共运524吨,用10节火车车厢和6辆汽车正好装完,求每节火车车厢和每辆汽车平均各装多少吨〔分配问题〕一级学生去饭堂开会,如果每4人共坐一张长凳,那么有28人没有位置坐,如果6人共坐一张长凳,求初一级学生人数及长凳数.〔分配问题〕用白铁皮做罐头盒。每张铁皮可制盒身16个,或制盒底43个,一个盒身与两个盒底配成一套罐头盒。现有150张白铁皮,用多少张制盒身,多少张制盒底,可以刚好配套〔分配问题〕某车间原方案30天生产零件165个。在前8天,共生产出52个零件,由于工期调整,要求提前5天超额完成任务,问以后平均每天至少要生产多少个零件〔分配问题〕某篮球队的一个主力队员在一次比赛中22投14中得28分,除了3个三分球外,他还投中的二分球及罚球分别多少个〔分配问题〕一群女生住假设干间宿舍,每间住4人,剩9人无房住;每间住6人,有间宿舍住不满,可能有多少间宿舍,多少学生〔分配工程问题〕现要加工400个机器零件,假设甲先做1天,然后两人再共做2天,那么还有60个未完成;假设两人齐心合作3天,那么可超产20个.问甲、乙两人每天各做多少个零件分析:工作时间×工作效率=工作量〔分配调运问题〕一船队运送一批货物,如果每艘船装50吨,还剩下25吨装不完;如果每艘船再多装5吨,还有35吨空位.求这个船队共有多少艘船,共有货物多少吨〔分配调运问题〕某运输公司有大小两种货车,2辆大车和3辆小车可运货15.5吨,5辆大车和6辆小车可运货35吨,客户王某有货52吨,要求一次性用数量相等的大小货车运出,问需用大,小货车各多少辆?〔分配工程问题〕甲、乙两人同时加工一批零件,前3小时两人共加工126件,后5小时甲先花了1小时修理工具,因此甲每小时比以前多加工10件,结果在后一段时间内,甲比乙多加工了10件,甲、乙两人原来每小时各加工多少件〔金融问题〕一种饮料大小包装有3种,1个中瓶比2小瓶廉价2角,1个大瓶比1个中瓶加1个小瓶贵4角,大,中,小各买1瓶,需9元6角.3种包装的饮料每瓶各多少元〔金融问题〕购置甲种图书10本和乙种图书16本共付款410元,甲种图书比乙种图书每本贵15元,问甲、乙两种图书每本各买多少元捐款10153050人数184〔金融问题〕2008年5月12日,四川省汶川县发生里氏8.0级强烈地震,给当地人民造成巨大的损失.全国迅速组织捐款支援灾区,我校七年级(1)班55名同学共捐款830元,捐款情况如右表.表中捐款2元和5元的人数不小心被墨水污染已看不清楚,请你帮助确定表中数据,并说明理由.◆规律方法应用〔难题〕〔分配问题〕戴着红凉帽的假设干女生与戴着白凉帽的假设干男生同租一游船在公园划船,一女生说:“我看到船上红、白两种帽子一样多.〞一男生说:“我看到的红帽子是白帽子的2倍〞.请问:该船上男、女生各几人〔行程问题〕有一头狮子和一只老虎在平原上决斗,争夺王位,最后一项为哪一项进展百米来回赛跑〔合计200m〕,谁赢谁为王.每跨一步,老虎为3m,狮子为2m,这种步幅到最后不变,假设狮子每跨3步,老虎只跨2步,那么这场比赛结果若何〔行程问题〕通讯员要在规定时间内到达某地,他每小时走15千米,那么可提前24分钟到达某地;如果每小时走12千米,那么要迟到15分钟.求通讯员到达某地的路程是多少千米和原定的时间为多少小时〔植树问题、行程问题、金融问题〕某工程车从仓库装上水泥电线杆运送到离仓库恰为1000米处的公路边栽立,要求沿公路的一边向前每隔100米栽立电线杆。工程车每次最多只能运送电线杆4根,要求完成运送18根的任务,并返回仓库。假设工程车行驶每千米耗油m升〔耗油量只考虑与行驶的路程有关〕,每升汽油n元,求完成此项任务最低的耗油费用。〔金融问题〕小敏的爸爸为了给她筹备上高中的费用,在银行同时用两种方式共存了4000元人民币.第一种,一年期整存整取,共反复存了3次,每次存款数都一样,这种存款银行利率为年息2.25%;第二种,三年期整存整取,这种存款银行年利率为2.70%.三年后同时取出共得利息303.75元(不计利息税),问小敏的爸爸两种存款各存入了多少元〔金融问题〕某公司的门票价格规定如下表所列,某校七年级〔1〕,〔2〕两个班共104人去游公园,其中〔1〕班人数较少,不到50人,〔2〕班人数较多,有50多人.经估算,如果两班都以班为单位分别购票,那么一共应付1240元;如果两班联合起来,作为一个团体购票,那么可以节省不少人民币,那么两班各有多少名学生购票人数1~50人51~100人100人以上票价13元/人11元/人9元/人〔金融问题〕某同学在A、B两购物中心发现他看中的运动服的单价一样,球鞋的单价也一样,运动服和球鞋的单价之和为452元,且运动服的单价比球鞋的单价的4倍少8元.〔1〕求该同学看中的运动服和球鞋的单价各是多少元?〔2〕某一天,该同学上街,恰好赶上商家促销,A所有的商品打八折销售,B全场每购物满100元返购物券30元销售(缺乏100元不返券,购物券全场通用,只限于购物),他只带了400元人民币.如果他只在一家购物中心购置这两种物品,你能说明他可以选择哪一家购置更省人民币吗?还有哪些购置方式哪种方式更划算〔金融问题〕某校组织局部师生到甲地考察,学校到甲地的全程票价为25元,对集体购票,客运公司有两种优惠方案供选择:方案1:所有师生按票价的88%购票;方案2:前20人购全票,从第21人开场,每人按票价的80%购票。你假设是组织者,请你根据师生人数讨论选择哪种方案更省人民币〔节算讨论金融问题〕小明想在两种灯中选购一种,其中一种是10瓦〔即0.01千瓦〕的节能灯,售价50元,另一种是100瓦〔即0.1千瓦〕的白炽灯,售价5元,两种灯的照明效果一样,使用寿命也一样〔3000小时内〕节能灯售价高,但较省电,白炽灯售价低,但用电多,电费0.5元/千瓦·时〔1〕照明时间500小时选哪一种灯省人民币〔2〕照明时间1500小时选哪一种灯省人民币〔3〕照明多少时间用两种灯费用相等〔节算讨论金融问题〕某公司为了扩大经营,决定购进6台机器用于生产某种活塞。现有甲、乙两种机器供选择,其中每种机器的价格和每台机器日生产活塞的数量如下表所示。经过预算,本次购置机器所耗资金不能超过34万元。甲乙价格〔万元/台〕75每日产量〔个〕10060〔1〕按该公司要求可以有几种购置方案〔2〕假设该公司购进的6台机器的日生产能力不能低于380个,那么为了节约资金应选哪种方案〔增幅和差倍问题〕随着我国人口增长速度的减慢,小学入学儿童数量每年按逐渐减少的趋势开展,某地区2003年和2004年小学入学儿童人数之比为8:7,且2003年入学人数的2倍比2004年入学人数的3倍少1500人,某人估计2005年入学儿童人数将超过2300人,请你通过计算,判断他的估计是否符合当前的变化趋势.专项强化训练1.某商场方案拨款9万元从厂家购进50台电视机,该厂家生产三种不同型号的电视机,出厂价分别是:甲种电视机每台1500元,乙种电视机每台2100元,丙种电视机每台2500元.〔1〕假设商场同时购
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 网络犯罪心理研究-第1篇-洞察分析
- 虚拟现实旅游内容创作与开发-洞察分析
- 遥感图像融合技术-洞察分析
- 2025年蓄电池项目评估报告
- 2025年中国酸菜鱼餐饮市场调查研究及行业投资潜力预测报告
- 2025年油印小纸伞项目投资可行性研究分析报告
- 2025年中国私有云行业市场发展监测及投资战略规划研究报告
- 2025年内燃机缸体农机配件项目可行性研究报告
- 2023-2028年中国快运快递行业市场发展监测及投资潜力预测报告
- 2019-2025年中国婴幼儿营养米粉行业市场深度分析及发展前景预测报告
- 中外美术史试题及答案
- 工会换届公示文件模板
- 江苏省南京市协同体七校2024-2025学年高三上学期期中联合考试英语试题答案
- 青岛版二年级下册三位数加减三位数竖式计算题200道及答案
- GB/T 12723-2024单位产品能源消耗限额编制通则
- GB/T 16288-2024塑料制品的标志
- 麻风病防治知识课件
- 干部职级晋升积分制管理办法
- TSG ZF003-2011《爆破片装置安全技术监察规程》
- 2024年代理记账工作总结6篇
- 电气工程预算实例:清单与计价样本
评论
0/150
提交评论